General Information

Operational Amplifiers 2

Voltage Comparators

Special Functions

4

3

1

Product Previews 5

Mechanical Data

Contents

Video Amplifiers Hall-Effect Devices Timers and Current Mirrors Magnetic Memory Controllers Sound Generators Frequency-to-Voltage Converters Sonar Ranging Circuits and Modules

D3218, JULY 1988 - REVISED MARCH 1989

- Acquisition Time ... 4 μs Typ
- Gain Error . . . 0.01% Max, 0.001% Typ for LF198A, LF398A
- Input Offset Voltage . . .
 1 mV Max for LF198A, 2 mV Max for LF398A
- Hold Step ... 1 mV Max for LF198A, LF398A
- Very Low Feedthrough Attenuation Ratio at f = 1 kHz...96 dB Typ
- High Input Impedance . . . 10¹⁰ Ω Typ
- Logic Inputs Compatible With All Logic Families

description

These sample-and-hold amplifiers use a combination of bipolar and junction FET transistors to provide precision, high speed, and

long hold times. Input offset voltages as low as 1 mV (LF198A) and gain errors as low as 0.001% (LF198A, LF398A) allow these amplifiers to be used in 12-bit systems. Properly selecting the external hold capacitor optimizes the dynamic performance. Acquisition times can be as low as 4 μ s for small capacitors, while hold step and droop errors can be held below 0.1 mV and 30 μ V/s, respectively, when using larger capacitors.

The LF198 and LF398 are fixed at unity gain with 10^{10} - Ω input impedance independent of the sample or hold mode. The logic inputs are at a high differential impedance to allow easy interfacing to any logic family without ground loop problems. A separate offset adjust pin can be used to zero the input offset voltage in either the sample or hold mode. Additionally, the hold capacitor can be driven with an external signal to provide precision level shifting or "differencing" operation. The devices operate over a wide supply voltage range from ± 5 V to ± 18 V with very little change in performance. Key parameters are specified over this full supply range.

The LF198 and LF198A are characterized for operation over the full military temperature range of -55°C to 125°C. The LF398 and LF398A are characterized for operation from 0°C to 70°C.

functional block diagram

AVAILABLE OPTIONS

		PACEAGE						
TA	AT 25°C	CERAMIC DIP (JG)		METAL CAN	PLASTIC DIP (P)			
0°C	2 mV	-	_	LI 'L	LF398AP			
70°C	7 mV	LI	G	LFCT	LF398P			
-55°C	1 mV	-	_	LI	-			
125°C	3 mV	-	щ.,	LF				

Special Functions

PR1. : IN : 4.4 scuments contain information cure ... f ... on date. Products conform to spuentoutions per line terms of Texas Instruments standard warrently. Production processing does not necessarily include testing of all parameters.

schematic

All resistor values shown are nominal and in ohms.

Special Functions

definition of terms

Acquisition Time

The time required to acquire, within a defined error, a new analog input voltage with an output change of 10 V. Acquisition time includes output settling time and includes the time required for all internal nodes to settle so that the output is at the proper value when switched to the hold mode.

Aperture Time

The delay required between a hold command and an input analog transition so that the transition does not affect the held output.

Dynamic Sampling Error

The error introduced into the held output voltage due to a changing analog input at the time the hold command is given. Dynamic sampling error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Gain Error

The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

Hold Settling Time

The time required for the output to settle within 1 mV of final value after a hold command is initiated.

Hold Step

The voltage step at the output of the amplifier when switching from sample mode to hold mode with a constant analog input voltage and a logic swing of 5 V.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. The logic inputs are protected to ±30 V differential as long as the voltage on both pins does not exceed the supply voltage. For proper operation, however, both the logic and logic reference pins must be at least 2 V below the positive supply, and one of these pins must be at least 3 V above the negative supply.

3. The output may be shorted to either supply.

DISSIPATION RATING TABLE

PACKAGE	T _A < 25°C POWER RATING	DERATING FACTOR	DERATING ABOVE TA	T _A = 70°C POWER RATING	TA = 125°C POWER RATING
JG (LF198_)	Writ UVU	8.4 mW/°C	90°C	500 mW	210 mW
JG (LF398_)	500 mW	66 mW/°C	74°C	500 mW	N/A
L (LF198_)	500 mW	6.6 mW/°C	74°C	500 mW	165 mW
L (LF398_)	500 mW	5.2 mW/°C	54°C	416 mW	N/A
P	500 mW	8.0 mW/°C	88°C	500 mW	200 mW

LF198, LF398 PRECISION SAMPLE-AND-HOLD AMPLIFIERS

electrical characteristics in sample mode, V_{CC±} = ±15 V, V_I = ±11.5 V, C_h = 0.01 μ F, R_L = 10 k Ω , logic reference at 0 V, logic at 2.5 V (unless otherwise noted)

			- +		LF198		S	LF398		
	PARAMETER	TEST CONDITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
					1	3	a secolo	2	7	
VIO	Input offset voltage		Full range			5			10	mv
1		$= \sqrt{CC^{2}} = \pm 2 \sqrt{10 \pm 18} \sqrt{10}$	25°C		5	25	1	10	50	- 4
ŀłΒ	Input bias current		Full range			75			100	nA
	Differential logic threshold voltage		25°C	0.8	1.4	2.4	0.8	1.4	2.4	v
	Input current, logic and logic reference		25°C		2	10		2	10	μA
	Leakage current into hold capacitor terminal	$V_{CC\pm} = \pm 5 V \text{ to } \pm 18 V,$ Hold mode, See Note 4	25°C		30	100		30	200	pА
-	Hold capacitor charging current	V _I -V _O = 2V	25°C		5			5		mA
zj	Input impedance		25°C		1010			1010		Ω
	Outeut imendence	Hold mode	25°C		0.5	2		0.5	4	0
^z o	Output impedance	Hold mode	Full range			4	L		6	52
	Coin error (con Note 5)	P. 10/0	25°C		0.002	0.005	1	0 004	0.01	0/
	Gain enor (see Note 5)		Full range			0.02			0.02	10
	Feedthrough attenuation ratio	f = 1 kHz	25°C	86	96		80	96		dB
	Hold step (see Note 6)	$V_0 = 0$	25°C		0.5	2		0.5	2.5	mV
K SVR	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 5V \text{ to } \pm 18 \text{ V},$ $V_{O} = 0$	25°C	80	110	2	80	110		v
lcc	Supply current	$V_{CC\pm} = \pm 5 \text{ V to } \pm 18 \text{ V},$ $T_A \ge 25^{\circ}\text{C}$	25°C		4.5	5.5		4.5	6.5	mA
-	Acquisition time to 0.1%	$\Delta V_{O} = 10 \text{ V}, \text{ C}_{h} = 1 \mu\text{F}$	25%		4		i La com	4		ue
	(see Note 5)	$\Delta V_{O} = 10 \text{ V}, \text{ C}_{h} = 0.01 \mu\text{F}$	250		16			16		

[†]Full range is -55°C to 125°C for the LF198 and 0°C to 70°C for the LF398.

NOTES: 4. The effects of a rise in junction temperature due to power dissipation or elevated ambient free-air temperature can be approximated by doubling the 25°C value for each 11°C increase in junction temperature. The specified limit applies for the full input signal range.

- 5. See definition of terms.
- 6. See definition of terms. Hold step is sensitive to stray capacitance coupling between input logic signals and the hold capacitor. Stray capacitance of 1 pF, for example, creates an additional 0.5-mV step with a 5-V logic swing and a 0.01-µF hold capacitor. The magnitude of the hold step is inversely proportional to the value of the hold capacitor.

electrical characteristics in sample mode, $V_{CC\pm} = \pm 15 \text{ V}$, $V_I = \pm 11.5 \text{ V}$, $C_h = 0.01 \mu \text{F}$, $R_L = 10 \text{ k}\Omega$, logic reference at 0 V, logic at 2.5 V (unless otherwise noted)

	PADAMETED	TEST CONDITIONS	+ +		_F198A			LF398A		
	PARAMETER	TEST CONDITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C		0.5	1		1	2	
VIO	input onset voitage		Full range		1.1	2			3	mv
l.m.	Input bios ourroat	ACCT = ID A ID I IO A	25°C	2 -	5	25	· · · · · · · · · · · · · · · · · · ·	10	25	- 4
чв	input bias content		Full range			75		-	50	nA
	Differential logic threshold voltage		25°C	0.8	1.4	2.4	0.8	1.4	2.4	v
	Input current, logic and logic reference		25°C		2	10		2	10	μA
	Leakage current into hold capacitor terminal	$V_{CC\pm} = \pm 5 V \text{ to } \pm 18 V,$ Hold mode, See Note 4	25°C		10	100		10	100	pА
	Hold capacitor charging current	$V_i - V_O = 2 V$	25°C		5			5		mA
zi	Input impedance		25°C	10.1	1010	S - 12		1010		Ω
	Output impodance	Hold mode	25°C		0.5	1		0.5	1	0
40	Output impedance	Hold Hibbe	Full range			4			6	52
	Gain error (see Note 5)	D 1010	25°C		0.001	0.005		0.001	0.005	0/
-	Cash enor (see Note 5)		Full range			0.01			0.01	70
	Feedthrough attenuation ratio	f = 1 kHz	25°C	86	96		86	96		dB
	Hold step (see Note 6)	V _O = 0	25°C		0.25	1		0.25	1	mV
KSVR	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 5 V \text{ to } \pm 18 V,$ $V_O = 0$	25°C	90	110		90	110		v
lcc	Supply current	$V_{CC\pm} = \pm 5 V \text{ to } \pm 18 V,$ $T_A \ge 25^{\circ}C$	25°C		4.5	5.5		4.5	6.5	mA
	Acquisition time to 0.1%	$\Delta V_{O} = 10 \text{ V}, \text{ C}_{h} = 1 \mu \text{F}$	2500		4	6		4	6	
	(see Note 5)	$\Delta V_{O} = 10 V, C_{h} = 0.01 \mu F$	20-0		16	25		16	25	μs

[†]Full range is ~55°C to 125°C for the LF198A and 0°C to 70°C for the LF398A.

 NOTES: 4. The effects of a rise in junction temperature due to power dissipation or elevated ambient free-air temperature can be approximated by doubling the 25°C value for each 11°C increase in junction temperature. The specified limit applies for the full input signal range.
 See definition of terms.

6. See definition of terms. Hold step is sensitive to stray capacitance coupling between input logic signals and the hold capacitor. Stray capacitance of 1 pF, for example, creates an additional 0.5-mV step with a 5-V logic swing and a 0.01-μF hold capacitor. The magnitude of the hold step is inversely proportional to the value of the hold capacitor.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 7: The amplitude of the hold step varies inversely with the value of the hold capacitor.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

¹Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL APPLICATION DATA

hold capacitor

For fast sample-and-hold applications, the value of the hold capacitor is critical. A low value gives fast acquisition but also increases errors due to hold step and droop caused by amplifier bias current. The capacitor should be made as large as possible consistent with acquisition time and dynamic sampling error requirements. Capacitors larger than 0.1 µF are generally not available in the low-loss dielectrics like Teflon, Polystyrene, and NPO, at least not at a reasonable price and size. Mylar, even with its poor dielectric absorption properties, may be a reasonable choice when very long sample times are used and low droop rates are needed.

Dielectric absorption in the hold capacitor can often be the major source of error in a sample-and-hold amplifier. The equivalent "circuit" of a typical capacitor with parallel RC networks used to model dielectric absorption is shown in Figure 21. In this capacitor, rapid changes in capacitor voltage are not tracked by the internal parasitic capacitors because of the resistance in series with them. This leads to a "sag" effect in the hold capacitor after a sudden change in voltage followed by a rapid switch to the hold mode. The capacitor remembers its previous state via the charge in the internal parasitic capacitance and sags back slightly toward the previous voltage. The magnitude of the sag depends upon the voltage change and the time spent sampling the new voltage. Several time constants are typically evident in the sag, although some capacitors tend to exhibit a single time constant, while others show a sag that indicates a blending of many time constants. Figures 17 and 18 show the amount of sag found after a 10-V step, with sample time at the new voltage and hold time at the new voltage as variables. It is obvious that sag problems are minimized by long sample times and short hold times. While this is often in conflict with basic sampling requirements, the sample-and-hold amplifier should be kept in the "tracking", or sampling, mode as much as possible to maximize the time the hold capacitor spends near the voltage at which it eventually "holds".

NOTE: C1 and C2 are approximately equal to 0.01Ch to 0.1Ch. R1 and R2 generate time constants of 0.1 to 50 ms with C1 and C2.

FIGURE 21. TYPICAL HOLD CAPACITOR EQUIVALENT CIRCUIT

The best capacitor for sample-and-hold applications is Teflon, which is clearly superior with regard to dielectric absorption and operates over the full temperature range (–55°C to 125°C). If size or price is a problem, the second choice for full-temperature-range operation is NPO (or COG) ceramic units. Some care must be used because not all NPO capacitors use the low-dielectric-constant ceramic necessary for low dielectric absorption. For lower temperature (< 70°C), Polystyrene has traditionally been the best hold capacitor. The best units are cylindrical and fairly large; there seems to be a strong correlation between small size and poor dielectric performance. Polypropylene has nearly the same absorption properties as polystyrene and offers 85°C operation; it also tends to be smaller. Other standard dielectrics such as mica, glass, mylar, and ordinary ceramic are much worse with regard to dielectric absorption. Mylar is sometimes used for large values when the ratio of sample to hold time is large and extremely low droop is required.

dynamic sampling error

A significant sampling error can occur in any sample-and-hold amplifier if the input is moving when the unit is put into the hold mode. The two major causes for this error are digital delay in switch opening and analog delay across the hold capacitor. The switch opening delay is obvious and leads to a "held" output error of $(dv/dt) \times t_d$; dv/dt is the slew rate of the input signal and t_d is the switch delay. For this device, t_d is approximately 150 ns, giving a 4.5-mV error when sampling the zero crossing of a 5-V (peak) sine wave at 1 kHz ($dv/dt = A \times 2\pi f = 5 \times 2\pi \times 10^3$). The analog delay is the difference between input signal and capacitor voltage. It is determined by the RC product of the hold capacitor and the effective series resistance, which in this device is about 150 Ω .

TYPICAL APPLICATION DATA

This analog delay with a $0.01 - \mu$ F hold capacitor is R × C = 150×10^{-8} = $1.5 \,\mu$ s, or about ten times the delay of the switch. The held output is related in time to the input voltage *before* the hold command was given. The overall dynamic sampling error is the sum of the digital and analog errors. Figure 12 helps estimate these errors as a function of input slew rate and hold capacitor size.

Dynamic sampling error can be reduced by a factor of ten or more by inserting a delay in the logic input so that the "hold" command is delayed by an amount equal to the RC time constant of the device and the external hold capacitor. For a 0.01- μ F hold capacitor and the 150- Ω resistor internal to this device, this value is 1.5 μ s. A simple RC network can be used in front of the logic input for delays up to approximately 1 μ s. Longer delays require the addition of a logic gate to speed up the rise time of the delayed signal. See "logic rise time" for further details.

hold step

Hold step is the small voltage step (after settling) seen at the output of a sample-and-hold amplifier when it is switched from the sample mode to the hold mode with a steady dc input. Hold step is typically the result of, or can be modeled as, a fixed quantity of charge transferred to the hold capacitor due to internal switching that occurs during the hold command. In the case of this device, that charge is approximately 5 pC, giving a hold step of 0.5 mV for a 0.01- μ F hold capacitor and 5 mV for a 1000-pF hold capacitor (V = Q/C). Hold step is reasonably independent of logic amplitude if care is taken to minimize the stray capacitance between the logic input and the hold capacitor. With thoughtful layout, including the guarding technique shown in Figure 21, stray capacitance should be under 0.3 pF, limiting charge variations to less than 0.3 pC/V.

NOTE. Use 10-pin layout The guard around Ch is tied to output.

FIGURE 22. GUARDING TECHNIQUE (BOTTOM VIEW)

Hold step varies slightly with analog input voltage (see Typical Characteristics). A typical unit changes at a rate of 0.4 pC/V. This slight variation manifests itself as a gain error when the amplifier is switched to the hold mode. With a 0.01- μ F capacitor, the resulting gain error is (0.4 pC/V)/0.01 μ F = 0.004%. This gain error is in the opposite direction of dc (sample mode) gain error. When the hold capacitor has a high value, dc gain error dominates and gain is slightly below unity (0.002%). When the hold capacitor has a low value (< 0.01 μ F). gain error induced by hold step dominates, and hold-mode gain is slightly above unity. Zeroing out hold step does not change the variation of hold step with regard to input voltage.

TYPICAL APPLICATION DATA

offset zeroing

A sample-and-hold amplifier has two distinct offset voltages. The first is the dc offset voltage of the amplifier while in the sample, or "tracking," mode. It is identical to the input offset voltage of any operational amplifier. The second offset voltage is the sum of the dc offset voltage plus a dynamic term called hold step. Hold step is a change in output voltage when the amplifier is switched from sample mode to hold mode with the input held steady. This second offset voltage is often called hold-mode offset voltage. It can be less than or much greater than the dc offset voltage, depending on the magnitude and sign of hold step.

A fairly accurate model for hold step is a fixed charge injected into the hold capacitor by the switch turn-off circuitry. The magnitude of the charge is reasonably independent of logic input amplitude. The resulting change in the hold capacitor is $Q/C_{\rm h}$. The charge Q is typically 5 pC, giving a 0.5-mV hold step with a 0.01- μ F hold capacitor. Since most sample-and-hold amplifiers are "used" (i.e., have their outputs read by an A-to-D converter), during the hold mode, hold-mode offset voltage is arguably more important than the sample-mode dc offset voltage.

Adjusting dc offset voltage is accomplished with a 1-k Ω low TC cermet potentiometer tied to V_{CC+} with 0.6 mA flowing through it and the wiper tied to pin 2. This allows pin 2 to be moved ± 300 mV around its nominal voltage (0.3 V below V_{CC+}). The offset voltage adjustment range is ± 9 mV, and the adjustment procedure nominally improves offset voltage drift when the dc offset voltage is reduced to zero. This offset method *can* be used to zero out hold-mode offset voltage, but at the expense of some induced offset voltage drift. Each millivolt of hold-step offset corrected by this method introduces 3.3 µV/°C drift. For 0.002-µF hold capacitors or larger with hold step a few millivolts or less, this is a practical solution to hold-mode offset voltage. In precision, wide-temperature-range applications, or when C_h is less than 0.002 µF, a separate hold-mode zeroing method should be used. The circuit shown in Figure 28, which uses a logic inverter and a 5-pF capacitor, is recommended.

logic fall time

Hold step is independent of logic input fall time only for fall times faster than 10 V/µs. For example, as logic fall time changes from 10 V/µs to 1 V/µs, hold step with a 0.01-µF hold capacitor typically increases from 0.25 mV to 1 mV. (See Figure 7 for more data and refer to Figure 23.) If logic slew rate is not constant, use the value at the threshold point (1.5 V with respect to logic reference). An RC network will have a discharge slew rate of V_L/RC, where V_L is the logic threshold of the LF198. The delay generated by the network will be RC × ln(V_{CC+}/V_L), where V_{CC+} is logic amplitude. For a 1-µs delay with 5-V logic , an RC time constant 0.8 µs is required. This has a slew rate of 2 V/µs at threshold, which slightly degrades hold step. It is obvious that an RC delay network significantly longer than 1 µs will have a large effect on hold step. If longer delays are required, they should be followed by several inverter stages or a Schmitt trigger to increase slew rate.

NOTE: Inverters may be eliminated for RC ≤ 3 µs. FIGURE 23. ADDING DELAY TO LOGIC INPUT

4

NOTES: A. Select R1 for 2.8 V at pin 8.

B. The logic input signal high level must be at least 2 V below the positive supply voltage of the device.

FIGURE 24. LOGIC INPUT CONFIGURATIONS

FIGURE 25. x1000 SAMPLE-AND-HOLD

NOTES: A. $V_O = V_B + \Delta V_I$ (Hold mode).

- B. This resistor protects input from surge currents but increases sample time. It can be eliminated if input is otherwise protected.
- C. Output follows input in hold mode and resets to V_B in sample mode.

FIGURE 26. SAMPLE-AND-DIFFERENCE CIRCUIT

TYPICAL APPLICATION DATA

NOTE A: Select R2 for ramp rate $\Delta V/\Delta t = 1.2 V/(R2)(C_h)$, $R \ge 10 \ k\Omega$.

FIGURE 27. RAMP GENERATOR WITH VARIABLE RESET LEVEL

PARAMETER	A	В	UNIT
Gain	1 ± 0.02	1 ± 0.2	%
zj	107	47	kΩ
BW	≈ 1000	≈ 400	kHz
Crosstalk at 1 kHz	- 90	- 90	dB
Offset	≤6	≤ 75	mV

FIGURE 29. 2-CHANNEL SWITCH

NOTES: A. Adjust R3 for amplitude. B. Select for time constant C1 = τ /100 kΩ.

FIGURE 31. CAPACITOR HYSTERESIS COMPENSATION

FIGURE 28. DC AND AC ZEROING

NOTE A: Output equals V_{CC} when in hold mode. Output equals ($V_{CC} + V_{IC}$) when in sample mode.

FIGURE 30. DIFFERENTIAL HOLD

NOTE A: Select (R_h)(C_h) >> $\frac{1}{2\pi f_{1}(MIN)}$

FIGURE 32. OUTPUT HOLDS AT AVERAGE OF SAMPLED INPUT

TYPICAL APPLICATION DATA

FIGURE 33. STAIRCASE GENERATOR

NOTE A: R8 compensates for transformer resistance. Select for flat output from LF198 while in sample mode.

FIGURE 34. ISOLATED TEMPERATURE SENSOR

NOTES: A. D1 is used for start-up. It limits duty cycle to approximately 75%.

- B. Select for optimum loop stability. C3 is nonpolarized.
- C. No tachometer is needed; back EMF of motor is sampled and used to control speed.

4

NOTES: A. Read \geq 1 µs after Q goes low.

B. For repetitive pulses only. Increase C5 for $f \le 10$ kHz.

C. D2-D5 1N914.

FIGURE 37. PULSE DURATION TO VOLTAGE CONVERTER

LM2907, LM2917 FREQUENCY-TO-VOLTAGE CONVERTERS

- Output Swings to Ground for Zero-Frequency Input
- Only One RC Network Provides Frequency Doubling for Low Ripple
- 8-Pin Versions Interface Directly to Variable-Reluctance Magnetic Pickups
- Uncommitted Collector and Emitter Outputs Provide 40-mA Sink or Source Current to Operate Relays, Solenoids, Meters, or LEDs
- Built-In Hysteresis for Noise Immunity
- Linearity Typically ±0.3%
- 8-Pin Versions are Fully Protected from Damage Due to TACH Input Swing Above V_{CC} and Below Ground

applications

Over/under speed sensing Frequency-to-voltage conversion Speedometers Breaker-point dwell meters Hand-held tachometers Speed governors Cruise control Automotive door-lock control Clutch control Horn control Touch or sound switches

D3003, MARCH . F DC'

LM2907, LM2917 . . . D OR P PACKAGE (TOP VIEW)

LM2907, LM2917 . . . D OR N PACKAGE (TOP VIEW)

TACH+	1	U14	NC
CAP1	2	13	NC
CPO [3	12	GND
IN + [4	11	TACH-
E	5	10	IN -
NC [6	9	Vcc
NC [7	8	С

NC-No internal connection

description

The LM2907 and LM2917 are monolithic frequency-to-voltage converters with an output circuit designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The converter (tachometer) section consists of a comparator driving a charge pump and offers frequency doubling for low ripple, full input protection in 8-pin versions, and an output swing to ground for a zero-frequency input. The output section consists of an operational amplifier, normally operating as a comparator, that drives an output transistor with both the collector and emitter floating. The circuit can either sink or source 40 mA of load current.

Two basic configurations of the devices are offered; an 8-pin version and a 14-pin version. The 8-pin versions have a ground-referenced tachometer input and an internal connection between the tachometer output and the operational amplifier input. The 8-pin version is well suited to single-speed or single-frequency switching or fully buffered frequency-to-voltage conversion applications. The more versatile 14-pin versions provide differential tachometer inputs and uncommitted operational amplifier inputs. In the 14-pin versions, the tachometer input can be floated and the operational amplifier becomes suitable for active filter conditioning of the tachometer output.

The LM2917 has an active shunt regulator connected across the power leads. The regulator clamps the supply voltage so that stable frequency-to-voltage and frequency-to-current conversions are possible with any supply voltage and a suitable resistor.

The LM2907 and LM2917 are designed for operation from -40°C to 85°C.

LM2907, LM2917 FREQUENCY-TO-VOLTAGE CONVERTERS

functional block diagrams

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} : LM2907
Supply current, ICC: LM2917
Collector-to-emitter voltage
Operational amplifier input voltage, IN + and IN 0 V to VCC
Tachometer input voltage: 8-pin version TACH + 0 V to 28 V
14-pin version TACH + and TACH
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperture range 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 85°C PO∴Fh RATING
D (8 pins)	725 mW	5.8 mW/°C	mW
D (14 pins)	900 mW	7 2 mW/°C	468 mW
N	1000 mW	7 7 mW/°C	500 mW
P	900 mW	7.2 mW/°C	468 mW

electrical characteristics, V_{CC} = 12 V (LM2907), V + = 12 V through 470 Ω (LM2917), T_A = 25 °C

converter (tachometer) section

PARAMETER				LM2907	1		LM2917		LIMIT	
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V _T	Input threshold volta	ge	$V_{I} = 250 \text{ mV}, \text{ f} = 1 \text{ kHz}$	±10	±15	±40	±10	±15	±40	mV
Vhys	Input hysteresis hys (see Note 1)		V ₁ = 250 mV, f = 1 kHz		30			30		mV
	Input offset	8-pin versions	$V_{I} = 250 \text{ mV}, \text{ f} = 1 \text{ kHz}$		5	15		5	15	
VIO	voltage (see Note 1)	14-pin versions	$V_{ID} = 250 \text{ mV}, \text{ f} = 1 \text{ kHz}$	1	3.5	10		3.5	10	mv
IB	Input bias current		$V_{l} = \pm 50 \text{ mV}$		0.1	1		0.1	1	μA
VOH	High-level output voltage, CAP1		Vi or ViD = 125 mV		8.3			5.0		v
VOL	Low-level output		$V_1 \text{ or } V_{1D} = -125 \text{ mV}$		2.3			1.2		v
1.	0	0.00	CAP1 and CPO at 6 V	140	180	240				
0	Output current, CAP	1, CPO	CAP1 and CPO at 3.8 V				140	180	240	μΑ
	Leakage current, CPC)	CAP1 open, CPO at 0 V, See Note 3			0.1			0.1	μA
	Gain constant			0.9	1	1.1	0.9	1	1.1	12720
	Nonlinearity (see Not	e 2)	f = 1 kHz, 5 kHz, or 10 kHz		0.3	±1		0.3	±1	%

output section

			1.00	1.1	0	1M2" 17			
	PARAMETER	TEST CONDITIONS	MIN	INF	MAX	MIN	111	MAX	UNIT
	land attack colored	V ₁ = 6 V, See Note 3		3	10				1
V10	input ottset voltage	V ₁ = 3.8 V, See Note 3			-		3	10	ן יייי
h Birrana a	Dise success	$V_1 = 6 V$		50	500	1			
ЧВ	Blas current	V ₁ = 3.8 V					50	500	
AV	Voltage amplification			-		-	200		V/mV
'c	Collector output (sink) current	$V_{C} = 1 V$, $V_{E} = 0$	40		2	40	50	200	mA
ίE	Emitter output (source) current	$V_C = V_{CC}, V_E = V_{CC-2}$		-10	0.000		-10	in chi	mA
	Callester emitter	$I_C = 5 mA$		0.1	0.5	1.000	0.1	0.5	
VCE(sat)		IC = 20 mA	104		1			1	V
	saturation voltage	IC = 50 mA		1	1.5		1	1.5	

NOTES: 1. Hysteresis is the algebraic difference $V_{T+} - V_{T-}$; offset voltage is the difference in magnitudes $|V_{T+}| - |V_{T-}|$. See parameter measurement information test circuits.

2. Nonlinearity is defined as the deviation of V_O at CPO for f = 5 kHz from a straight line defined by the V_O at 1 kHz and V_O at 10 kHz, with C1 = 1000 pF, R1 = 68 k Ω , C2 = 0.22 μ F.

3. Pin 2 must be bypassed with a 0.001-µF capacitor to prevent oscillation for these tests.

LM2907, LM2917 FREQUENCY-TO-VOLTAGE CONVERTERS

electrical characteristics

zener regulator (LM2917 only) V + = 12 V through 470 Ω , T_A = 25 °C

	PARAMETER	MIN TYP	MAX	UNIT
Vcc	Regulated supply voltage	7.56		V
rs	Series resistance	10.5	15	Ω
αVCC	Temperature coefficient of regulated supply voltage	1		mV/°C

total device (LM2907 only) V_{CC} = 12 V, T_A = 25 °C

		PARAMETER	MIN	TYP	MAX	UNIT
ICC	Supply current			3.8	6	mA

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TEST CIRCUIT AND WAVEFORMS

Special Functions

TYPICAL APPLICATION DATA

The LM2907 and LM2917 frequency-to-voltage converter circuits are designed for maximum versatility with a minimum of external parts. The first stage of these devices is a differential comparator. The singleinput 8-pin versions have one input grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This version is specifically for magnetic variablereluctance pickups, which typically provide a single-ended ac output. These single-ended inputs are fully protected against voltage swings to ± 28 V, which are easily attained by these types of pickups.

The differential-input 14-pin versions provide the option of setting the input reference level and still having hysteresis around that level to provide excellent noise rejection in any application. The input protection is removed in the 14-pin versions. Therefore, neither of the differential inputs should exceed the limits of the supply voltage. An input must not go below ground without a resistance in the lead to limit the current that will flow in the epi-substrate diode. The charge pump circuit that follows the input stage produces a dc output voltage proportional to the input frequency. The charge pump circuit (see Figure 2) consists of a timing capacitor (C1), an output resistor (R1), and an integrating or filter capacitor (C2). When the input changes state (due to a suitable zero crossing or differential voltage on the input), the timing capacitor is either charged or discharged linearly with a constant current of 200 µA through CAP1 between two voltages whose difference is $V_{CC}/2$. Within one-half cycle of the input frequency or a time equal to 1/2f, the change in charge on C1 is equal to (VCC/2)C1. The average amount of current pumped into or out of the capacitor is:

CAP1 current (average) = $\frac{Q}{T}$ = C1 · $\frac{V_{CC}}{2}$ · 2f = V_{CC} · f · C1

The output of the charge pump accurately mirrors the CAP1 current into the load resistor (R1) connected to CPO. If the pulses of current are integrated with a filter capacitor, the output voltage is the average CAP1 current times R1, and the total equation becomes:

 $V_0 = V_{CC} \cdot f \cdot C1 \cdot R1 \cdot K$

where K is the gain factor, which is typically 1.

The size of C2 is dependent only on the amount of ripple allowable and the required response time.

selection of R1, C1, and C2

To achieve optimum performance, there are some limitations to be considered in the selection of R1 and C1. The timing capacitor controls the RC time and provides internal compensation for the charge pump circuit. For very accurate operation it should be 100 pF or greater. Smaller values, especially at lower temperatures, can cause an error current through R1. VO/R1 must be less than or equal to the output current at CPO, which is fixed typically at 180 μ A. If R1 is too large it becomes a significant fraction of the output impedance at CPO, which degrades the linearity. In addition, ripple voltage must be considered when selecting R1. The size of C2 is directly affected by the size of R1. An expression that describes the ripple content at CPO is:

$$V_{\text{ripple}} = \frac{V_{\text{CC}}}{2} \cdot \frac{C1}{C2} \cdot (1 - V_{\text{CC}})$$

 $C \cdot f \cdot \frac{C1}{200}$ volts peak-to-peak

where

C1 and C2 are in farads VCC is in volts f is in hertz.

4

LM2907, LM2917 FREQUENCY-TO-VOLTAGE CONVERTERS

TYPICAL APPLICATION DATA

R1 cannot be chosen independently of ripple because response time or the time it takes V_Q to stabilize at a new level increases as the size of C2 increases. A compromise between ripple, response time, and linearity must be chosen carefully. As a final consideration, the maximum attainable input frequency is determined by V_{CC}, C1, and I_{cap} (current through CAP1).

$$f_{max} = \frac{I_{cap}}{C1 \cdot VCC}$$
 hertz

where

 l_{cap} is typically 200 μ A C1 is in farads V_{CC} is in volts.

zener regulator options (LM2917)

For those applications in which an output voltage or current must be obtained independently of supply voltage variations, the LM2917 can be used. The most important factor in selecting a dropping resistor for the unregulated supply is that the frequency-to-voltage converter circuit and the operational amplifier alone require approximately 3 mA at the voltage level set by the zener diode. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the supply voltage varies between 9 and 16 V, a resistance of 470 Ω will minimize the zener voltage variation to typically 160 mV. If the resistance goes under 400 Ω or above 600 Ω , the zener variation quickly rises above 200 mV for the same input variation.

FIGURE 2. MINIMUM-COMPONENT TACHOMETER

MC1445 GATE-CONTROLLED 2-CHANNEL-INPUT VIDEO AMPLIFIER

- Differential Inputs and Outputs
- Channel Select Time . . . 20 ns Typ
- Bandwidth Typically 50 MHz
- 16-dB Minimum Gain
- Common-Mode Rejection Typically 85 dB
- Broadband Noise Typically 25 μV

description

The MC1445 is a general-purpose, gated, dualchannel wideband amplifier designed for use in video-signal mixing and switching. Channel selection is accomplished by control of the voltage level at the gate. A high logic level selects channel A; a low logic level selects channel B. The unselected channel will have a gain of one or less.

The MC1445 is characterized for operation from 0° C to 75°C.

block diagram

NC-No internal connection

FUNCTION TABLE

GATE INPUT	SELECT
Н	Channel A
L	Channel B

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 12 V
Supply voltage, V _{CC} = (see Note 1)12 V
Differential input voltage, VID (see Note 2) ± 5 V
Output current, IO
Continuous total dissipation
Operating free-air temperature
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package 260 °C

NOTES: 1. Voltage values, except differential input voltage, are with respect to the midpoint of VCC+ and VCC-.

2. Differential input voltages are measured at a noninverting input terminal with respect to the appropriate inverting input terminal.

MC1445 GATE-CONTROLLED 2-CHANNEL-INPUT VIDEO AMPLIFIER

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 75°C POAL a RATING
J	626 mW	8.2 mW/°C	74°C	•• mW
N	625 mW	N/A	N/A	625 mW

recommended operating conditions

	MIN NOM	MAX	UNIT
Supply voltage, V _{CC} +	5	8	V
Supply voltage, V _{CC} -	-5	- 8	V
Operating free-air temperature range, TA	0	75	°C

electrical characteristics at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25° C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Avs	Large-signal single-ended voltage amplification	f = 125 kHz,	V _i = 20 mV	16	19.5	23	dB
BW	Bandwidth	$V_i = 20 \text{ mV}$			50		MHz
Vio	Input offset voltage					7.5	mV
10	Input offset current				2		μΑ
IB	Input bias current			245 11 10	15	30	μA
VICR	Common-mode voltage range				±2.5		v
Voq	Quiescent output voltage				0.1	<	V
AVOQ	Change in quiescent output voltage	Gate input change from 5 V to 0 V			±15		mV
VOPP	Maximum peak-to-peak output voltage swing	f = 125 kHz,	$R_L = 1 k\Omega$	1.5	2.5		v
zi	Input impedance	f = 125 kHz		3	10		kΩ
zo	Output impedance	f = 50 kHz			25		Ω
CMRR	Common-mode rejection ratio	f = 50 kHz			85		dB
Vn	Broadband equivalent input noise voltage	$BW = 5 Hz \text{ to } 10$ $R_S = 50 \Omega$	MHz,		25		μV
VTH	High-level gate threshold voltage	$A_{VS(A)} \ge 16 \text{ dB},$	A _{VS(B)} ≤ 0 dB		1.3	3	v
VTL	Low-level gate threshold voltage	$A_{VS(B)} \ge 16 \text{ dB},$	$A_{VS(A)} \leq 0 dB$	0.2	0.4		v
Чн	High-level gate current	VI = 5 V				4	μA
hL	Low-level gate current	V1 = 0				4	mA
^t PLH	Propagation delay time, low-to-high-level output	$\Delta V_{I} = 20 \text{ mV},$	50% to 50%		6.5		ns
^t PHL	Propagation delay time, high-to-low-level output	$\Delta V_{I} = 20 \text{ mV},$	50% to 50%		6.3		ns
^t TLH	Transition time, low-to-high-level output	$\Delta V_{I} = 20 \text{ mV},$	10% to 90%		6.5		ns
^t THL	Transition time, high-to-low-level output	$\Delta V_{l} = 20 \text{ mV},$	10% to 90%		7		ns
ICC+	Supply current from VCC+	No load,	No signal		7	15	mA
Icc-	Supply current from VCC -	No load,	No signal		-7	-15	mA
PD	Power dissipation	No load,	No signal		70	150	mW

4 Special Functions

D2759, NOVEMBER 1983-REVISED FEBRUARY 1988

- Combines All Read-Amplifier Active Circuitry into One Monolithic Circuit
- Peak Shift . . . 2% Max (MC3470A)
- Designed to be Interchangeable with Motorola MC3470

description

The MC3470 and MC3470A are monolithic read-amplifier systems each containing all the active circuitry necessary for obtaining digital information from floppy disk storage. They are designed to accept the ac differential signal from the magnetic head and produce a digital output pulse corresponding to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output.

The MC3470 and MC3470A are characterized for operation from 0 °C to 70 °C.

functional block diagram

IP-F Dult TINN NATA 4-couments contain information - Litent as 4: Litli.at in date. Products conform to standard and the terms of Texas Instruments standard warranty. Production processing does not necessare, include testing of all parameters.

Copyright © 1983, Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage, VCC1 (see Note 1)	7 V
Supply voltage, VCC2	16 V
Input voltage range (amplifier inputs)	$-0.2\ V$ to $7\ V$
Output voltage, VO (data output)	-0.2 V to 7 V
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range 6	35°C to 150°C

NOTE 1: All voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage VCC1		4.75	5	5.25	ν
Supply voltage VCC2		10	12	14	V
Timing capacitor "Y" (see Note 2)				• • •	pF
Timing capacitor ·		100			pF
Timing resistors RX1 and RX2		15		10	kΩ
	Monostable no. 1				
liming of digital section	Monostable no. 2	100		1000	ns
Operating free-air temperature, TA				70	°C

NOTE 2: To minimize current transients, CX1 should be kept as small as convenient.

electrical characteristics over recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

gain amplifier section

	PARAMETER		TEST CO	ONDITIONS	MIN	TYPT	MAY	UNIT
A	Differential voltage	MC3470	C3470	f - 200 kHz	80	100	_ ı. []	VIN
AVD	amplification	MC3470A		1 - 200 KH2	100	110	130	v/v
IB	Input bias current					- 10	- 25	μA
VICR	Common-mode inpu voltage range	ut	THD ≤ 5%		-0.1 to 1.5			v
VIDR	Differential input voltage range		THD ≤ 5%		±25			mν
VOPP	Peak-to-peak differe output voltage	ential			3	4		v
Voc	Common-mode		$V_{I} = 0,$	V _{ID} = 0		3		v
VOD	••• ential output offset voltage		$V_{I} = 0,$ $T_{A} = 25^{\circ}C$	$V_{ID} = 0,$			0.4	v
	Short-circuit output current (each amplifier output)		Output shorted to gro	ound		-8		~ ^
ios			Output shorted to Vo	CC1	2.8	4		mA
r _i	Small-signal input re	esistance	$T_A = 25 ^{\circ}C$		100	250		kΩ
ro	Small-signal output (single-ended)	resistance	$V_{CC1} = 5 V,$ $T_A = 25 ^{\circ}C$	$V_{CC2} = 12 V,$		15		Ω
BW	Bandwidth (3 dB)		$V_{id} = 2 \text{ mV rms},$ $V_{CC2} = 12 \text{ V},$	$V_{CC1} = 5 V,$ $T_A = 25^{\circ}C$	5			MHz
CMRR	Common-mode rejection ratio		$V_{CC1} = 5 V,$ $A_{VD} = 40 dB,$ $T_{A} = 25 °C$	Vipp = 200 mV, f = 100 kHz,	50			dB
kaum	Supply voltage rejection ratio		$A_{VD} = 40 \text{ dB},$	$V_{CC1} = 5 \pm 0.25 V,$ $V_{CC2} = 12 V$	50			đB
*SVR			T _A = 25°C	$V_{CC1} = 5 V,$ $V_{CC2} = 12 \pm 2 V$	60			0.5
Vn	Equivalent input noise voltage		$BW = 10 \text{ Hz to 1 M}$ $T_A = 25^{\circ}C$	Hz,		15		μV

[†]All typical values are at V_{CC1} = 5 V, V_{CC2} = 12 V, T_A = 25 °C.

active-differentiator section

PARAMETER		TEST CONDITIONS		MIN TYP	T MAX	UNIT	
Isink	Sink current at pins 12 and 13		V _{OD} = V _{CC1}		1 1.	4	- mA
		MC3470	$V_{CC1} = 5 V,$	$V_{CC2} = 12 V,$		5%	
	Peak shift MC3	MC3470A	$V_{IDPP} = 1 V,$ $I_{CaD} = 500 \mu A,$	See Figure 1		2%	
Fid	··· rential inp	ut resistance			3	0	kΩ
Ind	I rential out	put resistance			4	0	Q

digital section

PARAMETER TEST CONDITIONS			ONDITIONS	MIN TYP [†]	MAX	UNIT
∨он	High-level output voltage (pin 10)	$V_{CC1} = 4.75 V,$ $I_{OH} = -0.4 mA$	$V_{CC2} = 12 V,$	2.7		v
VOL	Low-level output voltage (pin 10)	V _{CC1} = 4.75 V, I _{OL} = 8 mA	$V_{CC2} = 12 V,$		0.5	v
ICC1	Supply current from VCC1	V _{CC1} = 5.25 V		35	50	mA
ICC2	Supply current from VCC2	V _{CC2} = 14 V		4.5	10	mA

timing characteristics over recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted) (see Figure 2)

	PARAMETER	TEST CONDITIONS	MIN	TYPT MAX	UNIT
tr	Rise time you to:			20	ns
tf	Fall time (pin 10)			25	ns
	Timing accuracy of monostable no. 1 compared to 0.625 RX1 • CX1 + 200 ns	RX1 = $1.5 \text{ k}\Omega$ to $10 \text{ k}\Omega$, CX1 = 150 pF to 680 pF	85%	115%	
	Timing accuracy of monostable no. 2 compared to 0.625 RX2 • CX2	RX2 = 1.5 kΩ to 10 kΩ, CX2 = 100 pF to 800 pF	85%	115%	

[†]All typical values are at V_{CC1} = 5 V, V_{CC2} = 12 V, T_A = 25 °C.

PARAMETER MEASUREMENT INFORMATION

4

FIGURE 2. TIMING ACCURACY

TYPICAL APPLICATION INFORMATION

FIGURE 7

T Special Functions

SE555, SE555C, SA555, NE555 PRECISION TIMERS

D1669, SEPTEMBER 1973-REVISED OCTOBER 1988

- Timing from Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL-Compatible Output Can Sink or Source Up to 200 mA
- Functionally Interchangeable with the Signetics SE555, SE555C, SA555, NE555; Have Same Pinout

SE555C FROM TI IS NOT RECOMMENDED FOR NEW DESIGNS

description

These devices are monolithic timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle may be independently controlled with two external resistors and a single external capacitor.

The threshold and trigger levels are normally two-thirds and one-third, respectively, of V_{CC}. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. When the reset input goes low, the flip-flop is reset and the output goes low. Whenever the output is low, a low-impedance path is provided between the discharge terminal and ground.

The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of 5 to 15 V. With a 5-V supply, output levels are compatible with TTL inputs.

The SE555 and SE555C are characterized for operation over the full military range of -55 °C to 125 °C. The SA555 is characterized for operation from -40 °C to 85 °C, and the NE555 is characterized for operation from 0 °C to 70 °C.

SE555, SE555C...JG PACKAGE SA555, NE555...D, JG, OR P PACKAGE (TOP VIEW)

GND	1	U	8	□ vcc
TRIG	2		7	DISCH
OUT	3		6	THRES
RESET	4	15	5	CONT

NC-No internal connection

functional block diagram

Reset can override Trigger, which can override Threshold.

PRODUCTION SALA Securents contain information COLORS to first scheme to dete. Products conform to specifications por the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1983, Texas Instruments Incorporated

SE555, SE555C, SA555, NE555 PRECISION TIMERS

	AVA	AILABLE OF	TIONS			FUNCTION TABLE						
Te		CARALI	PAC	FAIsi	DIACTIC	RESET		THRESHOLD	OUTPUT	DISCHARGE		
RANGE	V _{CC} = 15 V	OUTLINE	CARRIER	DIP	DIP	Low	Irrelevant	Irrelevant	Low	On		
		(D)	(FK)	(JG)	(JG) (P)	High	< 1/3 VDD	Irrelevant	High	Off		
0°C						High	> 1/3 VDD	> 2/3 VDD	Low	On		
to 70°C	11.2 V	NE555D		NE555JG	NE555P	High	> 1/3 V _{DD}	< 2/3 V _{DD}	As p est	ablished		
-40°C to 85°C	11.2 V	SA555D		SA555JG	SA555P	[†] Voltage	levels show	n are nominal.				
- 55 °C to 125 °C	10.6 V 11.2 V		SE555FK SE555CFK	SE555JG SE555CJG								

The D package is available taped and reeled. Add the suffix R to the device type (e.g., NE555DR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (See Note 1)
Input voltage (control, reset, threshold, and trigger) VCC
Output current
Continuous total dissipation see Dissipation Rating Table
Operating free-air temperature range: SE555, SE555C
SA555
NE555
Storage temperature range
Case temperature for 60 seconds: FK package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package $\ldots \ldots \ldots 260^{o}C$

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG (SE555, SE555C)	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
JG (SA555, NE555)	825 mW	6.6 mW/°C	528 mW	429 mW	N/A
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A

recommended operating conditions

	SI	SE555		SE555C		SA555		NE555	
	T MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{CC}	4.0	18	4.5	16	4.5	16	4.5	16	V
Input voltage (control, reset, threshold, and trigger)		Vcc		Vcc	1.1.1			VCC	V
Output current	1100	±200		±200		э.]	1.0	±200	mA
Operating free-air temperature, TA	- 55	125	- 55	125	-40	85	0	70	°C

4-38

T Special Functions

PARAMETER	TEST CONDITIONS			SE555			SE555C, SA555,			
		MIN	TYP	MAX	MIN	TYP	MAX			
Threshold voltage level	$V_{CC} = 15 V$ $V_{CC} = 5 V$		9.4	10	10.6	8.8	10	11.2	V	
Threshold voltage level			2.7	3.3	4	2.4	3.3	4.2	v	
Threshold current (see Note 2)				30	250		30	250	nA	
Tringen unles au faunt	V _{CC} = 15 V		4.8	5	5.2	4.5	5	5.6		
i rigger voltage level	V _{CC} = 5 V		1.45	1.67	1.9	1.1	1.67	2.2	v	
Trigger current	Trigger at 0 V			0.5	0.9		0.5	2	μA	
Reset voltage level			0.3	0.7	1	0.3	0.7	1	V	
Reset ourrent	Reset at VCC			0.1	0.4	1	0.1	0.4	mA	
Reset current	Reset at 0 V			-0.4	-1		-0.4	-1.5	mA	
Discharge switch off-state current			1	20	100		20	100	nA	
Control voltage	Vcc = 15 V		9.6	10	10.4	9	10	11		
(open circuit)	Vcc = 5 V		2.9	3.3	3.8	2.6	3.3	4	V	
		IOL = 10 mA		0.1	0.15		0.1	0.25		
	V 15.V	IOL = 50 mA		0.4	0,5		0.4	0.75		
	VCC = 15 V	IOL = 100 mA	S	2	2.2		2	2.5		
Low-level output voltage		IOL = 200 mA		2.5		1000	2.5		v	
	Mar - EM	IOL = 5 mA		0.1	0.2		0.1	0.35		
	VCC = 0 V	IOL = 8 mA		0.15	0.25		0.15	0.4		
	Vec - 15 V	IOH = -100 mA	13	13.3		12.75	13.3	Concerna de		
High-level output voltage	VCC = 15 V	$I_{OH} = -200 \text{ mA}$		12.5			12.5		v	
	$V_{CC} = 5 V$	$I_{OH} = -100 \text{ mA}$	3	3.3		2.75	3.3			
	Output low,	$V_{CC} = 15 V$		10	12		10	15		
Supply current	No load	$V_{CC} = 5 V$	4	3	5	1000	3	6	m¢	
	Output high,	$V_{CC} = 15 V$		9	10		9	13		
	No load	Vcc = 5 V	1	2	4		2	5		

NOTE 2: This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 12. For example, when $V_{CC} = 5 V$, the maximum value is $R = R_A + R_B \approx 3.4 M\Omega$, and for $V_{CC} = 15 V$, the maximum value is 10 M Ω .

operating characteristics, VCC = 5 V and 15 V

PARAMETER		TEST	\$E555			SE555C, SA555, NE555			UNIT
		CONDITIONS	MIN	N TYP	MAX	MIN	TYP	MAX	
Initial error of	Each timer, monostable§	T 2500		0.5	1.5	0	1	3	
timing interval [‡]	Each timer, astable¶	(A = 20°C		1.5		2.25		-	70
Temperature coefficient	Each timer, monostable§	T _A = MIN		30	100		50		
of timing interval	Each timer, astable¶	to MAX		90		200	150		ppm/°C
Supply voltage sensitivity	Each timer, monostable §	T 2500	1 m m	0.05	0.2		0.1	0.5	NA
of timing interval	Each timer, astable	I I A = 25°C	0.15			0.3		- 1	%/V
Output pulse rise time Output pulse fall time		$C_L = 15 pF$,		100	200		100	300	
		T _A = 25°C	in the second	100		10.000	1 •	300	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.

 5 Values specified are for a device in a monostable circuit similar to Figure 9, with component values as follow: $R_{A} = 2 k\Omega$ to 100 k Ω , $C = 0.1 \mu F$.

Values specified are for a device in an astable circuit similar to Figure 12, with component values as follow: R_A = 1 kΩ to 100 kΩ, C = 0.1 μF.

Special Functions A

SE555, SE555C, SA555, NE555 PRECISION TIMERS

TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only.

TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0 °C and above 70 °C are applicable for SE555 circuits only.

TYPICAL APPLICATION DATA

monostable operation

FIGURE 9. CIRCUIT FOR MONOSTABLE OPERATION

FIGURE 10. TYPICAL MONOSTABLE WAVEFORMS

For monostable operation, any of these timers may be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger input sets the flip-flop ($\overline{\mathbf{Q}}$ goes low), drives the output high, and turns off Q1. Capacitor C is then charged through R_A until the voltage across the capacitor reaches the threshold voltage of the threshold input. If the trigger input has returned to a high level, the output of the threshold comparator will reset the flip-flop ($\overline{\mathbf{Q}}$ goes high), drive the output low, and discharge C through Q1.

Monostable operation is initiated when the trigger input voltage falls below the trigger threshold. Once initiated, the sequence ends only if the trigger input is high at the end of the timing interval. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately $t_W = 1.1$ R_AC. Figure 11 is a plot of the time constant for various values of R_A and C. The threshold levels and charge rates are both directly proportional to the supply voltage, V_{CC}. The timing interval is therefore independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to the reset and trigger terminals during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when the reset input is not used, it should be connected to V_{CC}.

FIGURE 11. OUTPUT PULSE DURATION vs CAPACITANCE

TYPICAL APPLICATION DATA

astable operation

NOTE A: Decoupling the control voltage input to ground with a capacitor may improve operation. This should be evaluated for individual applications.

FIGURE 12. CIRCUIT FOR ASTABLE OPERATION

As shown in Figure 12, adding a second resistor, R_B, to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C will charge through R_A and R_B and then discharge through R_B only. The duty cycle may be controlled, therefore, by the values of R_A and R_B.

This astable connection results in capacitor C charging and discharging between the threshold-voltage level ($\approx 0.67 \cdot V_{CC}$) and the trigger-voltage level ($\approx 0.33 \cdot V_{CC}$). As in the monostable circuit, charge and discharge times (and therefore the frequency and duty cycle) are independent of the supply voltage.

Figure 13 shows typical waveforms generated during astable operation. The output high-level duration t_{L} and low-level duration t_{L} may be calculated as follows:

 $t_{\rm H} = 0.693 (R_{\rm A} + R_{\rm B}) C$

$$t_{L} = 0.693 (R_{B}) C$$

Other useful relationships are shown below.

period =
$$t_H + t_L = 0.693 (R_A + 2R_B) C$$

frequency
$$\approx \frac{1.44}{(R_A + 2R_B) C}$$

Output driver duty cycle =
$$\frac{t_L}{t_H + t_L} = \frac{R_B}{R_A + 2R_B}$$

Output waveform duty cycle = $\frac{tH}{tH + tL} = 1 - \frac{R_B}{R_A + 2R_B}$

Low-to-high ratio =
$$\frac{t_L}{t_H} = \frac{R_B}{R_A + R_B}$$

4

Special Functions

SE555, SE555C, SA555, NE555 PRECISION TIMERS

TYPICAL APPLICATION DATA

The circuit shown in Figure 15 may be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is continuously retriggered by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as illustrated in Figure 16.

frequency divider

By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 17 illustrates a divide-by-3 circuit that makes use of the fact that retriggering cannot occur during the timing cycle.

TYPICAL APPLICATION DATA

pulse-width modulation

NOTE B: The modulating signal may be direct or capacitively coupled to the control terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

FIGURE 18. CIRCUIT FOR PULSE-WIDTH MODULATION

FIGURE 19. PULSE-WIDTH MODULATION WAVEFORMS

The operation of the timer may be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to the control pin. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 illustrates the resulting output pulse-width modulation. While a sine-wave modulation signal is illustrated, any wave shape could be used.

SE555, SE555C, SA555, NE555 PRECISION TIMERS

TYPICAL APPLICATION DATA

pulse-position modulation

NOTE B: The modulating signal may be direct or capacitively coupled to the control terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

FIGURE 20. CIRCUIT FOR PULSE-POSITION MODULATION

FIGURE 21. PULSE POSITION-MODULATION WAVEFORMS

As shown in Figure 20, any of these timers may be used as a pulse-position modulator. This application modulates the threshold voltage, and thereby the time delay, of a free-running oscillator. Figure 21 illustrates a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.

TYPICAL APPLICATION DATA

sequential timer

S closes momentarily at t = 0.

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits may be connected to provide such sequential control. The timers may be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 illustrates a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms.

٠

D2440, APRIL 1978-REVISED OCTOBER 1988

- **Two Precision Timing Circuits per Package**
- Astable or Monstable Operation
- TTL-Compatible Output Can Sink or Source Up to 150 mA
- Active Pull-Up or Pull-Down
- Designed to be Interchangeable with Signetics SE556, SE556C, SA556, NE556

APPLICATIONS

Precision Timer from Microseconds to Hours **Pulse-Shaping Circuit Missing-Pulse Detector Tone-Burst Generator** Pulse-Width Modulator Pulse-Position Modulator

Sequential Timer **Pulse Generator Time-Delay Circuit Frequency Divider Appliance Timer** Industrial Controls Touch-Tone Encoder

SE556C FROM TI IS NOT **RECOMMENDED FOR NEW DESIGNS**

description

These devices provide two monolithic, independent timing circuits of the SE555, SE555C, SA555, or NE555 type in each package. These circuits can be operated in the astable or the monostable mode with external resistor-capacitor timing control. The basic timing provided by the RC time constant may be actively controlled by modulating the bias of the control voltage input.

The threshold and trigger levels are normally two-thirds and one-third respectively of VCC. These levels can be altered by use of the control voltage terminal. When the trigger input falls below trigger level,, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. When the reset input goes low, the flip-flop is reset and the output goes low. Whenever the output is low, a low impedance path is provided between the discharge terminal and ground.

NC-No internal correction

functional block diagram (each timer)

Reset can override Trigger, which can override Threshold.

Copyright ©

PROFILE" IN CATA journents contain information Referring the SA schements contain information curver is standard and a conducts conform to specification of texas instruments standard warrenty. Production processing does not necessarily include testing of all parameters. Texas Instruments Incorporated

The SE556 and SE556C are characterized for operation over the full military range of -55 °C to 125 °C. The SA556 is characterized for operation from -40 °C to 85 °C, and the NE556 is characterized for operation from 0 °C to 70 °C.

1. TO 1. 1.		PAC	FAHF		DECEN	TF
V _{thres} MAX	SMALL	CHIP	LEAMIC	PLASTIC	RESET	vo
Vcc = 15 V	OUTLINE	CARRIER	DIP	DIP	Low	Irr
	(D)	(FK)	(J)	(N)	High	<
1.000				1.2.2.1	High	>
11.2 V	NE556D		NE556J	NE556N	High	>
11.2 V	SA556D		SA556J	SA556N	[†] Voltage	leve
10.6 V 11.2 V		SE556FK SE556CFK	SE556J SE556CJ			
	V _{thres} MAX V _{CC} = 15 V 11.2 V 11.2 V 10.6 V 11.2 V	Vthres MAX SMALL OUTLINE (D) 11.2 V NE556D 11.2 V SA556D 10.6 V 11.2 V	Vthres MAX SMALL CHIP VCC = 15 V OUTLINE CHIP 01 (D) (FK) 11.2 V NE556D Integration 10.6 V SE556FK SE556FK 11.2 V SE556FK SE556FK	Vthres MAX SMALL CHIP I:LHAMIC VCC = 15 V OUTLINE CARRIER DIP (D) (FK) (J) 11.2 V NE556D NE556J 11.2 V SA556D SA556J 10.6 V SE556CFK SE556CFK 11.2 V SE556CFK SE556J	PACF AFF Vthres MAX SMALL CHIP L'HAMIC PLASTIC VCC = 15 V OUTLINE CARRIER DIP DIP DIP (D) (FK) (J) (N) NE556D NE556D NE556J NE556N 11.2 V SA556D SA556J SA556J SA556N 10.6 V SE556FK SE556CFK SE556CJ	PACE AFF RESET Vthres MAX SMALL CHIP HiLhAMIC PLASTIC RESET VCC = 15 V UUTLINE CARRIER DIP DIP Low (D) (FK) (J) (N) High 11.2 V NE556D NE556J NE556J High 11.2 V SA556D SA556J SA556J SA556N 10.6 V SE556FK SE556CFK SE556CJ

AVAILABLE OPTIONS

FUNCTION TABLE

RESET	TRIGGER	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	< 1/3 VDD	Irrelevant	High	Off
High	> 1/3 VDD	> 2/3 VDD	Low	On
High	> 1/3 VDD	< 2/3 V _{DD}	As p est	reviously ablished

[†]Voltage levels shown are nominal.

The D package is available taped and reeled. Add the suffix R to the device type (e.g., NE556DR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1) 18	s v
Input voltage (control, reset, threshold, and trigger) V(cc
Output current	nA
Continuous total dissipation see Dissipation Rating Tal	ble
Operating free-air temperature range: SE556, SE556C	°C
SA556 – 40 °C to 85	°C
NE556 0°C to 70	°C
Storage temperature range	°C
Case temperature for 60 seconds: FK package	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260	°C

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	TA = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J (SE556, SE556C)	1375 mW	11 0 mW/°C	880 mW	715 mW	275 mW
J (SA556, NE556)	1025 mW	8.2 mW/°C	656 mW	533 mW	N/A
N	1575 mW	12.6 mW/°C	1008 mW	819 mW	N/A

4-50

Special Functions

recommended operating conditions

	SE556		SE556C		SA556		NE556		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, VCC	4.5	18	4.5	16	4.5	16	4.5	16	V
Input voltage (control, reset, threshold, and trigger)		Vee		Vcc	11. T	Vcc		Vcc	V
Output current		±	1.25	±200		±200		±200	mA
Operating free-air temperature, TA	- 55	125	- 55	125	-40	85	0	70	°C

electrical characteristics at 25 °C free-air temperature, VCC = 5 V to 15 V (unless otherwise noted)

PARAMETER	RAMETER TEST CONDITIONS			SE556		SE5	56C, SA NE556	556,	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Threshold voltage lovel	$V_{CC} = 15 V$		9.4	10	10.6	8.8	10	11.2	V
Threshold voltage level	$V_{CC} = 5 V$		2.7	3.3	4	2.4	3.3	4.2	, in the second
Threshold current (see Note 2)				30	250		30	250	nA
Trigger veltage level	$V_{CC} = 15 V$		4.8	5	5.2	4.5	5	5.6	V
ringger voltage level	$V_{CC} = 5 V$		1.45	1.67	1.9	1.1	1.67	2.2	v
Trigger current	Trigger at 0 V			0.5	0.9		0.5	2	μA
Reset voltage level			0.3	0.7	1	0.3	0.7	1	V
Pacet ourrent	Reset at VCC			0.1	0.4		0.1	0.4	-
Reset current	Reset at 0 V		12.00	-0.4	- 1		-0.4	- 1.5	inA
Discharge switch off-state current				20	100		20	100	nA
Control voltage	V _{CC} = 15 V		9.6	10	10.4	9	10	11	
(open circuit)	$V_{CC} = 5 V$		2.9	3.3	3.8	2.6	3.3	4	v
		IOL = 10 mA		0.1	0.15		0.1	0.25	
	Vec - 15 V	IOL = 50 mA		0.4	0.5		0.4	0.75	
Low loval output voltage	VCC = 15 V	IOL = ' nA	1	2	2.2		2	2.5	
Low-level output voltage		IOL = . mA		2.5			2.5		v
	Vec - EV	IOL = 5 mA		0.1	0.15		0.1	0.25	
	VCC - 5 V	IOL = 8 mA		0.15	0.25		0.15	0.3	
	Vec - 16 V	$i_{OH} = -100 \text{ mA}$	13	13.3		12.75	13.3		
High-level output voltage	VCC = 15 V	IOH = mA		12.5	-		12.5		v
	$V_{CC} = 5 V$	IOH = - mA	3	3.3		2.75	3.3		
	Output low,	V _{CC} = 15 V		20	24		20	30	
Supply ourrept	No load	$V_{CC} = 5 V$		6	10		6	12	-
Supply content	Output high,	V _{CC} = 15 V		18	20		18	26	MA
	No load	Vcc = 5 V		4	8		4	10	

NOTE 2: This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 1. For example, when $V_{CC} = 5 V$, the maximum value is $R = R_A + R_B \approx 3.4 M\Omega$, and for $V_{CC} = 15 V$, the maximum value is $\approx 10 M\Omega$.

operating characteristics, VCC = 5 V and 15 V

PARA	NETER	TEST	SE	556		SE5	56C, SA NE556	556,	UNIT
		CONDITIONS	MIN TYP	MAX	AAX Mil.	ТҮР	MAX		
	Each timer, monostable §			0.5	1.5		1	3	
Initial error of	Each timer, astable¶	TA = 25°C		1.5			2.25		%
timing interval*	Timer 1 - Timer 2		±	0.5			±1		
	Each timer, monostable §	T		30	100		50		
Temperature coefficient of	Each timer, astable			90			150		ppm/°C
timing interval	Timer 1 - Timer 2	to MAX	±	± 10			±10		20100
· · · · ·	Each timer, monostable §		0	0.05	0.2		0.1	05	
Supply voltage sensitivity	Each timer, astable	T _A = 25°C	0	0.15		0	0.3		%/V
of timing interval	Timer 1 - Timer 2		±	0.1	2.25.25				
Output pulse rise time		$C_{L} = 15 pF$,		100	200		_	300	ne
Output pulse fall time	$T_A = 25 °C$	1 3	100	200		100	300	115	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.

[§]Values specified are for a device in a monostable circuit similar to Figure 2, with component values as follow: $R_A = 2 k\Omega$ to 100 kΩ, _C = 0.1 μF.

Values specified are for a device in an astable circuit similar to Figure 1, with component values as follow: R_A = 1 kΩ to 100 kΩ, C = 0.1 μF.

TYPICAL APPLICATION DATA

FIGURE 1. CIRCUIT FOR ASTABLE OPERATION

NOTE A: Bypassing the control voltage input to ground with a capacitor may improve operation. This should be evaluated for individual applications.

FIGURE 2. CIRCUIT FOR MONOSTABLE OPERATION

SE592, NE592, NE592A DIFFERENTIAL VIDEO AMPLIFIERS

D2667, FEBRUARY 1984-REVISED FEBRUARY 1988

- 90-MHz Bandwidth
- Adjustable Gain to 400
- No Frequency Compensation Required
- Adjustable Passband
- Designed to be Interchangeable with Signetics SE592 and NE592

DEVICE	TEMPERATURE	AVD RANGE
TYPE	RANGE	(GAIN OPTION 1)
SE592	-55°C to 125°C	300-500
NE592	0°C to 70°C	250-600
NE592A	0°C to 70°C	400-600

description

These devices are monolithic two-stage amplifiers with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the devices to drive capacitive loads, and all stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

Fixed differential amplification of 100 or 400 may be selected without external components; or amplification may be adjusted from 0 to 400 by the use of a single external resistor connected between the gain-adjustment pins 1A and 1B. External frequency-compensating components are not required for any gain option.

The devices are particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The SE592 is characterized for operation over the full military temperature range of -55°C to 125°C. The NE592 and NE592A are characterized for operation from 0°C to 70°C.

; 511; 15 [10], 1/4 "A Jocuments contain · · · · ration · · · · · · sof, · 1 I-· · · on date. Products. · · · · m to spuc.l.Lations ... · I · · · terms of Texas I · · · · · · rents standard warrenty. Production processing. Jours not necessarily include testing of ell parameters.

SE592, NE592, NE592A DIFFERENTIAL VIDEO ALIPLIFIERS

OUT+

OUT-

All resistor values shown are in ohms and nominal. In NE592 or SE592, R1 = 500 Ω , R2 = 500 Ω . In NE592A, R1 = 600 Ω , R2 = 600 Ω .

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1) 8	۷
Supply voltage V _{CC} - (see Note 1)	V
Differential input voltage	V
Common-mode input voltage ±6	V
Output current	۱A
Continuous total power dissipation See Dissipation Rating Tab	le
Operating free-air temperature range: SE59255°C to 125	°C
NE592, NE592A	°C
Storage temperature range	°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: D or N package	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	°C

NOTE 1: All voltage values except differential input voltages are with respect to the midpoint between VCC+ and VCC-.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	N/A	N/A	500 mW	
J	500 mW	11 mW/°C	105°C	500 mW	275 mW
N	500 mW	N/A	N/A	500 mW	

SE592, NE592, NE592A DIFFERENTIAL VIDEO AMPLIFIERS

recommended operating conditions

		SE592			NE592 NE592A		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC+	3	6	8	3	6	8	V
Supply voltage, VCC-	-3	-6	-8	-3	-6	-8	V
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics at 25°C operating free-air temperature, $V_{CC+} = 6 V$, $V_{CC-} = -6 V$ (unless otherwise noted)

	DADAMETED	TEST	TECT CO	NOITIONE	GAIN		SE592		LINUT
	PARAMETER	FIGURE	1251 00	NUTTONS	OPTION [†]	MIN	TYP	MAX	UNIT
	Large-signal differential		N 0.V	D. 040	1	300	400	500	1101
AVD	voltage amplification		VOPP = 3 V,	HL = 2 RM	2	90	100	110	V/V
DIA		•	V		1		40		
BW	Bandwidth (-3 dB)	4	VOPP = 1 V		2		90		MITZ
10	Input offset current				1, 2, or 3		0.4	3	μA
IB	Input bias current				1, 2, or 3		9	20	μA
VICR	Common-mode input voltage range	3			1, 2, or 3	±1			V
Voc	Common-mode output voltage	1	RL = ∞		1, 2, or 3	2.4	2.9	3.4	v
					1			1.5	
Voo	Output offset voltage	1	$V_{IO} = 0,$	RL = ∞	2			1	v
		0			3		0.35	0.75	
VOPP	Maximum peak-to-peak output voltage swing	1	$R_L = 2 k\Omega$		1, 2, or 3	3	4		v
					1		4		10
ή	Input resistance				2	20	30		K17
ro	Output resistance					1	20		Ω
Ci	Input capacitance	1					2		pF
CHOD	Common-mode	3	$V_{IC} = \pm 1 V$,	f = 100 kHz	2	60	86	0.000	-
Civinn	rejection ratio	3	$V_{IC} = \pm 1 V_i$	f = 5 MHz	2		60		db
KSVR	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	4	$\Delta V_{CC+} = \pm 0.5$ $\Delta V_{CC-} = \pm 0.5$	5 V, 5 V	2	50	70		dB
Vn	Broadband equivalent noise voltage	4	BW = 1 kHz to	10 MHz	1, 2, or 3		12		μV
	Orananation dalay time	2	N/o - 1V		1		7.5		
pd	Fropagation delay time	2	$\nabla A 0 = 1 A$		2	1.	6	10	ns
	Pico timo	2	AVO T 1V		1		10.5		-
4r		2	1 200 - 10		2	1	4.5	10	115
Isink(max)	Maximum output sink current				1, 2, or 3	3	4	1. T	mA
ICC	Supply current		No load,	No signal	1, 2, or 3		18	24	mA

[†]The gain option is selected as follows:

Gain Option 1 . . Gain Adjust pin 1A is connected to pin 1B, pins 2A and 2B are open.

Gain Option 2 . . Gain Adjust pin 2A is connected to pin 2B, pins 1A and 1B are open.

Gain Option 3 . . All Gain Adjust pins are open.

Special Functions

SE592 DIFFERENTIAL VIDEO AMPLIFIER

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 6 V$, $V_{CC-} = -6 V$ (unless otherwise noted)

		TEST			GAIN		SE592		
	PARAMETER	FIGURE	TEST COND	mons	OPTION	MIN	MIN TYP M		UNIT
Avn	Large-signal differential	1	VOPP = 3 V		1	200		600	V/V
	voltage amplification				2	80		120	
	Input offset current				1 or 2			5	μΑ
liΒ	Input bias current				1 or 2			40	μΑ
VICR	Common-mode input voltage range	3			1 or 2	±1			v
					1			1.5	
Voo	Output offset voltage	1	$V_{ID} = 0,$	RL = ∞	2			1.2	v
00				-	3			1	
VOPP	Maximum output voltage peak-to-peak swing	1	$R_L = 2 k\Omega$		1 or 2	2.5			v
ri	Input resistance				2	8			kΩ
CMRR	Common-mode rejection ratio	3	$V_{IC} = \pm 1 V$,	f = 100 kHz	2	50			dB
ks∨R	Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	4	$\Delta V_{CC+} = \pm 0.5 V,$ $\Delta V_{CC-} = \pm 0.5 V$		2	50			dB
lsink(max)	Maximum output sink current				1, 2, or 3	2.5			mA
lcc	Supply current	1	No load,	No signal	1, 2, or 3			27	mA

[†]The gain option is selected as follows:

Gain Option 1 . . Gain Adjust pin 1A is connected to pin 1B; pins 2A and 2B are open.

Gain Option 2 . . Gain Adjust pin 2A is connected to pin 2B; pins 1A and 1B are open.

Gain Option 3 . . All Gain Adjust pins are open.

FIG	-	TECTOO	NUTIONS	NIND		ZACON		z	IES92A		TIMIT
	GURE		CNOTION	OPTION	MIN	TYP	MAX	MIN	AVT	MAX	
differential	,		010-0	1	250	400	600	400	440	600	1111
lification	-	vOPP = 3 v.		2	03	100	120	80	100	120	~~~
â		1 F		-		40			40		
	v			2		6			66		ZHW
t current	-	VIC = 0		1, 2, or 3		0.4	5		0.4	5	HA H
current	-	VIC = 0		1, 2, or 3		6	30		10	30	PLA
mode input voltage range	3			1, 2, or 3	Ŧ			+1			>
mode output voltage	-	e la constante de la constante			2.4	2.9	3.4	2.4	2.9	3.4	>
inst with a contract			d	1 or 2			1.5			1.5	=
set voltage	-	·n - n	3 2	3		0.35	0.75		0.35	0.75	>
peak-to-peak output wing	- -	1 = 2 kn		1, 2, or 3	ю	4		6	4		>
				-		4			4		-
sidiice				0	10	30		10	30		K32
sistance						20			20		U
acitance						2			2		ЪF
citer relation	3	$i_{IC} = \pm 1 V$,	f = 100 kHz	0	60	86		60	86		9
	3	$i_{IC} = \pm 1 V$,	f = 5 MHz	2		60			60		9
ottage rejection	4	$\frac{1}{2} \frac{1}{2} \frac{1}$, v.	2	20	70		50	20		dB dB
nd equivalent noise voltage	4 E	3.1 = 1 kHz to	10 MHz	1, 2, or 3		12			12		PLV .
ion delay time	c	N M		-		7.5			7.5		1
	2	A 1 = 0AT		2		9	10		9	10	S
	c	11 M		-		10.5			10.5		1
	4	A DAT		6		4.5	12		4.5	12	S
output sink current				1, 2, 01 3	0	4		3	4	-	MM
Irrent	~	No load,	No signal	1, 2, or 3		18	24		19	24	Am

Ē.	
-	
C)	
in	
3	
5	
¢	
2	

•	
10	
**	
<u>_</u>	
Ē	
=	
3	
-	
>	
(0)	
~~~	
11	
1	
()	
~	
0	
>	
-	
~	
>	
10	
e	
11	
1.0	
+	
0	
0	
2	
-	
e a	
2.	
3	
+=	
0	
-	
e	
0	
<b>C</b>	
5	
e	
+	
**	
Ó.	
ň	
2	
-	
-	
0)	
5	
1	
20	
-	
e a	
Q.	
~	
0	
()	
0	
in	
õi	
+=	
60	
10	
15	
**	
0	
-	
¢	
-	
0	
3	
1	
0	
2	
0	
-	
3	
Ö	
0	
۵.	
-	
<u> </u>	
e	



# NE592, NE592A DIFFERENTIAL VIDEO AMPLIFIER

Special Functions A

4-57

**Special Functions** 

-6 V electrical characteristics over recommended operating free-air temperature range, VCC + = 6 V, VCC - = (unless otherwise noted)

		TEST	include total		N	2662		NESSZA		TIMUT.
	PARAMETER	FIGURE	IESI CONDITION	OPTION	MIN	YP MAX	MIN	TYP	MAX	IND
	Large signat differential	,	Ne N	-	250	600	400		600	NN
Q	voltage amplification	-	$h \circ = ddO_h$	2	80	120	80		120	~/~
0	Input offset current			1 or 2		9			9	μA
8	Input bias current			1 or 2		40			40	<b>PLA</b>
/ICB	Common-mode input voltage range	m		1 or 2	Ŧ		+1			>
		,		1 or 2		1.5			1.5	
00	Output onset vonage	-	אם <b>יח ב</b> ווֹים מוּא אום אום אום שו	e					-	>
dd0,	Maximum output voltage peak-to-peak swing	۲	RL = 2 kΩ	1 or 2	2.8		2.8			>
	Input resistance			2	8		8			kΩ
CMRR	Common-mode rejection ratio	8	$V_{IC} = \pm 1 V$ , f = 100	kHz 2	50		50			dB
SVR	Supply-voltage rejection ratio (AVCC/AViO)	4	$\Delta V_{CC+} = \pm 0.5 \text{ V},$ $\Delta V_{CC-} = \pm 0.5 \text{ V}$	2	20		50			₿
sink(max)	Maximum output sink current			1, 2, or 3			2.8	4		Am
8	Supply current	1	No load, No sign.	al 1, 2, or 3		27			27	mA

Gain Option 2... Gain Adjust pin 2.A is connected to pin 2B, pins 1A and 1B are open. Gain Option 2... Adj Gain Adjust pins are open.

TEXAS

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

# N**E592,** NE592A DIFFERENTIAL VIDEO AMPLIFIERS

## SE592, NE592, NE592A DIFFERENTIAL VIDEO AMPLIFIERS



FIGURE 3

FIGURE 4

Special Functions **P** 





## SN28827 SONAR RANGING MODULE

D2780, OCTOBER 1983-REVISED MARCH 1988

- Accurate Sonar Ranging from 6 Inches to 35 Feet
- Drives 50-kHz Electrostatic Transducer with No Additional Interface
- Operates from Single Supply
- Accurate Clock Output Provided for External
  Use
- Selective Echo Exclusion
- TTL-Compatible
- Multiple Measurement Capability
- Uses TL851 and TL852 Sonar Ranging Integrated Circuits



The SN28827 is an economical sonar ranging module that can drive a 50-kHz, 300-V electrostatic transducer with no additional interface. This module, with a simple interface, is able to measure distances of from 6 inches to 35 feet. The typical absolute accuracy is  $\pm 2\%$  at one foot or greater.

This module has an external blanking input that allows selective echo exclusion for operation in a multipleecho mode. The module is able to differentiate echos from objects that are only three inches apart. The digitally controlled-gain, variable-bandwidth amplifier minimizes noise and sidelobe detection in sonar applications.

The module has an accurate ceramic-resonator-controlled 420-kHz time-base generator. An output based on the 420-kHz time base is provided for external use. The sonar transmit output is 16 pulses at a frequency of 49.4 kHz.

The SN28827 operates over a supply voltage range of from 4.5 V to 6.8 V and is characterized for operation from 0°C to 40°C.

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage from any pin to ground (see Note 1)	7 V
Voltage from any pin except XDCR to VCC (see Note 1)	.5 V
Operating free-air temperature range 0°C to 4	10°C
Storage temperature range	35°C

NOTE 1: The XDCR pin may be driven from -1 V to 300 V typical with respect to ground.



See schematic, Figure 4, for terminal assignments.

4

## SN28827 SONAR RANGING MODULE

#### recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, VCC		4.5	6.8	V
High-level input voltage, VIH	BLNK,	2.1		V
Low-level input voltage, VIL	BLNK, BLNK,		0.6	V
ECHO and OSC output 1 3			6.8	v
Delay time, power up to '. high		5		ms
Recycle period		80		ms
Operating free-air temperature, TA		0	40	°C

## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETE	R	TEST CONDITIONS	MIN TYP [†]	MAX	UNIT
Input current	BINH, INIT	$V_{\rm I} = 2.1  \rm V$		1	mA
High-level output current, IOH	· ·· osc	V _{OH} = 5.5 V		100	μA
Low-level output voltage, VOL	ECHO, OSC	$I_{OL} = 1.6 \text{ mA}$		0.4	V
Transducer bias voltage					V
Transducer output vi ' peak-to-peak)					V
Number of cycles for • • • output to reach 300 V		C = 500 pF		7	
Internal blanking interval		See Note 2	2.38		ms
Frequency during 16-pulse	output	See Nete 2	49.4		
transmit period		See Note 2	49.4		KHZ
Frequency after 16-pulse OSC output			93.3		
transmit period	XMIT output	See Note 2	0		KITZ
<u> </u>	During transmit period		200		
Supply current, ICC	After transmit period			100	mA

 $^\dagger All$  typical values are at V_CC = 5 V and T_A = 25 °C. NOTE 2: These typical values apply for a 420-kHz ceramic resonator.

## schematics of inputs and outputs

Special Functions

4





#### operation with Polaroid electrostatic transducer

There are two basic modes of operation for the SN28827 Sonar ranging module: single-echo mode and multiple-echo mode. The application of power (V_{CC}), the activation of the Initiate (INIT) input, and the resulting transmit output, and the use of the Blanking Inhibit (BINH) input are basically the same for either mode of operation. After applying power (V_{CC}), a minimum of 5 ms must elapse before the INIT input can be taken high. During this time, all internal circuitry is reset and the internal oscillator stabilizes. When INIT is taken high, drive to the Transducer (XDCR) output occurs. Sixteen pulses at 49.4 kHz with 300-V amplitude will excite the transducer as transmission occurs. At the end of the 16 transmit pulses, a dc bias of 150 V will remain on the transducer as recommended for optimum operation by the transducer manufacturer.

In order to eliminate ringing of the transducer from being detected as a return signal, the receive (REC) input of the ranging control IC is inhibited by internal blanking for 2.38 ms after the initiate signal. If a reduced blanking time is desired, then the BINH input can be taken high to end the blanking of the Receive input anytime prior to internal blanking. This may be desired to detect objects closer than 1.33 feet corresponding to 2.38 ms and may be done if transducer damping is sufficient that ringing is not detected as a return signal.

In the single-echo mode of operation (Figure 1), all that must be done next is to wait for the return of the transmitted signal, traveling at approximately 0.9 ms per foot out and back. The returning signal is amplified and appears as a high-logic-level echo output. The time between INIT going high and the echo (ECHO) output going high is proportional to the distance of the target from the transducer. If desired, the cycle can now be repeated by returning INIT to a low-logic level and then taking it high when the next transmission is desired.

INIT		
NSMIT (RNAL) -	16 PULSES	
BLNK -	LOW	
BINH - ERNAL NKING		

FIGURE 1. EXAMPLE OF A SINGLE-ECHO-MODE CYCLE WITHOUT BLANKING INPUT

If there is more than one target and multiple echos are to be detected from a single transmission, then the cycle is slightly different (Figure 2). After receiving the first return signal, which causes the ECHO output to go high, the Blanking (BLNK) input must be taken high then back low to reset the Echo output for the next return signal. The blanking signal must be at least 0.44 ms in duration to account for all 16 returning pulses from the first target and allow for internal delay times. This corresponds to the two targets being 3 inches apart.



**Special Functions** 

## SN28827 SONAR RANGING MODULE



FIGURE 2. EXAMPLE OF A MULTIPLE-ECHO-MODE CYCLE WITH BLANKING INPUT

During a cycle starting with INIT going high, the receiver amplifier gain is incremented higher at discrete times (Figure 3) since the transmitted signal is attentuated with distance. At approximately 38 ms, the maximum gain is attained. For this reason, sufficient gain may not be available for objects greater than





## SN28827 SONAR RANGING MODULE

35 feet away. Although gain can be increased by varying R1 (Figure 4), there is a limit to which the gain can be increased for reliable module operation. This will vary from application to application. The modules are "kitted" prior to their final test during manufacture. This is necessary because the desired gain distribution is much narrower than the module gain distribution if all were kitted with one value resistor. As kitted, these modules will perform satisfactorily in most applications. As a rule of thumb, the gain can be increased by up to a factor of 4, if required, by increasing R1 correspondingly. Gain is directly proportional to R1.



[†]R1 is selected at the factory.

FIGURE 4. SCHEMATIC





FIGURE 5. COMPONENT LAYOUT AND DIMENSIONS OF MODULE



i.

.

-.

•

. .. ..

## SN28828 SONAR RANGING MODULE

D2842, JANUARY 1985

- Accurate Sonar Ranging from 6 Inches to 35 Feet
- Drives 40-kHz Piezoelectric Transducer
- Operates from Single Supply
- Accurate Clock Output Provided for External Use
- Selective Echo Exclusion
- TTL-Compatible
- Multiple Measurement Capability
- Uses TL852 and TL853 Sonar Ranging Integrated Circuits



See schematic, Figure 4, for terminal assignments.

#### description

The SN28828 is an economical sonar ranging module that can drive a 40-kHz piezoelectric transducer with no additional interface. This module, with a simple interface, is able to measure distances ranging from 6 inches to 35 feet. The typical absolute accuracy is  $\pm 2\%$  at one foot or greater.

This module has an external blanking input that allows selective echo exclusion for operation in a multipleecho mode. The module is able to differentiate echos from objects that are only 3.5 inches apart. The digitally controlled-gain, variable-bandwidth amplifier minimizes noise and side-lobe detection in sonar applications.

The module has an accurate ceramic-resonator-controlled 420-kHz time-base generator. An output based on the 420-kHz time base is provided for external use. The sonar transmit output is 16 pulses at a frequency of 40 kHz.

The SN28828 operates over a supply voltage range of from 4.5 V to 6.8 V and is characterized for operation from 0 °C to 40 °C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage from any pin to ground (see Note 1)	
Voltage from any pin except XDCR to VCC (see Note 1)	-7 V to 0.5 V
Operating free-air temperature range	. 0°C to 40°C
Storage temperature range	-40°C to 85°C

NOTE 1: The XDCR pin may be driven to ±35 V typical with respect to ground.



## SN28828 SONAR RANGING MODULE

#### recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, VCC		4.5	6.8	V
High-level input voltage, VIH	BLNK, BINH, INIT	2.1		V
· level · Joltage, VIL	BLNK, BINH, INIT		0.6	V
O and output voltage			6.8	v
Delay time, power up to INIT high		5		ms
Recycle period		80		ms
Operating free-air temperature, TA		0	40	°C

## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	1	TEST CONDITIONS	MIN TYP [†] MAX	UNIT
Input current	BLNK, BINH, INIT	$V_{I} = 2.1 V$	1	mA
Hign-level output current, IOH	E	VOH = 5.5 V		μA
Low-level output voltage, VOL	E	loL = 1.6 mA	v.4	V
Transducer output voltage (pea	k-to-peak)		70	V
Internal blanking interval		See Note 2	2.46	ms
Frequency during 16-pulse	OSC output	Gran Nata 2	40	
transmit period	output	See Note 2	40	KHZ
Frequency after 16-pulse Jutput transmit period XMIT output		Rea New O	93.3	kHz
		See Note 2	0	
Court and the	During transmit period		350	
Supply current, ICC	After transmit period			An

 † Typical values are at V_{CC} = 5 V and T_A = 25 °C. NOTE 2: These typical values apply for a 420-kHz ceramic resonator.

## schematics of inputs and outputs





## operation with 40-kHz piezoelectric transducer

There are two basic modes of operation for the SN28828 Sonar ranging module: single-echo mode and multiple-echo mode. The application of power (V_{CC}), the activation of the Initiate (INIT) input and the resulting transmit output, and the use of the Blanking Inhibit (BINH) input are basically the same for either mode of operation. After applying power (V_{CC}), a minimum of 5 ms must elapse before the INIT input can be taken high. During this time, all internal circuitry is reset and the internal oscillator stabilizes. When INIT is taken high, drive to the Transducer (XDCR) output occurs. Sixteen pulses at 40 kHz with 70-V peak-to-peak amplitude will excite the transducer as transmission occurs.

In order to eliminate ringing of the transducer from being detected as a return signal, the Receive (REC) input of the ranging control IC is inhibited by internal blanking for 2.46 ms after the initiate signal. If a reduced blanking time is desired, then the BINH input can be taken high to end the blanking of the Receive input anytime prior to internal blanking. This may be desired to detect objects closer than 1.37 feet corresponding to 2.46 ms and may be done if transducer damping is sufficient that ringing is not detected as a return signal.

In the single-echo mode of operation (Figure 1), all that must be done next is to wait for the return of the transmitted signal, traveling at approximately 0.9 ms per foot out and back. The returning signal is amplified and appears as a high-logic-level echo output. The time between INIT going high and the Echo (ECHO) output going high is proportional to the distance of the target from the transducer. If desired, the cycle can now be repeated by returning INIT to a low-logic level and then taking it high when the next transmission is desired.

		<u>_</u>
NSMIT ERNAL)		
BLNK	LOW	
ERNAL NKING	- 2.46 ms -	

## FIGURE 1. EXAMPLE OF A SINGLE-ECHO-MODE CYCLE WITHOUT BLANKING INPUT

If there is more than one target, and multiple echos are to be detected from a single transmission, then the cycle is slightly different (Figure 2). After receiving the first return signal, which causes the ECHO output to go high, the Blanking (BLNK) input must be taken high then back low to reset the Echo output for the next return signal. The blanking signal must be at least 0.52 ms in duration to account for all 16 returning pulses from the first target and allow for internal delay times. This corresponds to the two targets being 3.5 inches apart.



Special Functions

## SN28828 SONAR RANGING MODULE

Vcc+		<u></u>	 <u></u>
INIT			 ٦
TRANSMIT (INTERNAL)	16 PULSES		 
BLNK			 
BINH			 
INTERNAL BLANKING			 
ЕСНО			 

FIGURE 2. EXAMPLE OF A MULTIPLE-ECHO-MODE CYCLE WITH BLANKING INPUT

During a cycle starting with INIT going high, the receiver amplifier gain is incremented higher at discrete times (Figure 3) since the transmitted signal is attenuated with distance. At approximately 38 ms, the maximum gain is attained. For this reason, sufficient gain may not be available for objects greater than

**T** Special Functions





35 feet away. Although gain can be increased by varying R1 (Figure 4), there is a limit to which the gain can be increased for reliable module operation. This will vary from application to application. The modules are "kitted" prior to their final test during manufacture. This is necessary because the desired gain distribution is much narrower than the module gain distribution if all were kitted with one value resistor. As kitted, these modules will perform satisfactorily in most applications. As a rule of thumb, the gain can be increased by up to a factor of 3, if required, by increasing R1 correspondingly. Gain is directly proportional to R1.



NOTE: All dimensions are in millimeters and parenthetically in inches.

FIGURE 5. COMPONENT LAYOUT AND DIMENSIONS OF MODULE


#### SN76494, SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

D2801, JUNE 1984-REVISED JANUARY 1989

- Each Circuit Contains 3 Programmable Tone Generators
- Programmable White-Noise Generator
- Programmable Attenuation
- Simultaneous Sounds
- Up to 500 kHz Clock Input for SN76494 and 4 MHz for SN76496
- External Audio Input for SN76496 May Be Summed with Internally Generated Tones
- The SN76494A and SN76496A are Interchangeable with the SN76494 and SN76496, Respectively

N DUAL-IN-LINE PACKAGE (TOP VIEW)							
D2 1 0 D1 2 D0 3 READY 4 WE 5 CE 6 AUDIO OUT 7 GND 8	16   VCC     15   D3     14   CLK     13   D4     12   D5     11   D6     10   D7     9   AUDIO IN						

#### description

The SN76494 and SN76494A digital complex sound generators are integrated injection logic (I²L) tone generators designed to provide low-cost tone or noise generation capability in microprocessor systems. The SN76494 and SN76494A are data-bus-based input-output peripheral devices that interface the microprocessor through 8 data lines and 3 control lines.

The SN76494 and SN76494A are identical to the SN76496 and SN76496A except that the maximum clock input frequency for SN76494 and SN76494A is 500 kHz and for SN76496 and SN76496A, it is 4 MHz. A "divide-by-eight" stage is deleted from the SN76496 and SN76496A circuitry so that only 4 clock pulses are required to load the data into the SN76494 and SN76494A, compared to 32 pulses for the SN76496 and SN76496A.

Either of these devices may also be used as a replacement for the SN76489A in all applications if pin 9 is left open or grounded. The output load must be limited to 10 mA.

When audio input is not desired in the SN76494, SN76494A, SN76496 or SN76496A, the audio input pin should be grounded.

#### functional block diagram



PRODUCTION DATA decuments contain information current as of publication date. Products canform to specifications per the terms of Texas Instruments standard warrenty. Productien processing does not necessarily include testing of all paramaters.



#### SN76494, SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

#### schematics of inputs and outputs



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage, Vi: Audio input
All other inputs
Output current at pin 7
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 2) 1150 mW
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate linearly to 736 mW at 70°C at the rate of 9.2 mW/°C.

#### recommended operating conditions

		SN764	SN76494, SN76494A		SN764	SN76496, SN76496A		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	٧
VIH	High-level input voltage	2			2			V
VIL	L level input voltage			0.8			0.8	v
1	Audio input current	0		1.8	0		1.8	mA
VOH	High-level output voltage (nin 4)			5.5			5.5	V
IOL.	Low-level output current ··· · 4)			2		- June - Li	2	mA
fclock	Input clock frequency			0.5	K		4	MHz
td(WE)	Delay time, CE low to WE low	0	1000		0			ns
tsu	Setup time, data before WEL or CEL	0			0	-		ns
th	Hold time data after READY	0			0			ns
TA	Operating ' air temperature	0		70	0		70	°C



#### SN76494, SN76494A, SN76496. SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

	PARAN	IETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
IOH	High-level output current (p	pin 4)	V _O = 5.5 V			10	μA
lιΗ	High-level input current (Al	I digital inputs)	$V_I = V_{CC}$			10	μΑ
lu.	Low level input ourrest	CE input			-25	-175	1.1.1
۹L	com-level input current	All other digital inputs			-10	-70	μA
VIB	IB Input bias voltage, audio (pin 9)		$R = 4.7 k\Omega$ to V _{CC}	0.5	0.7	0.9	V
Vон	High-level output voltage (	pin 7)				5.5	V
VOL	Low-level output voltage (p	vin 4)	$I_{OL} = 2 \text{ mA}$	10.00	0.25	0.4	V
VOPP	Peak-to-peak output voltag	ie (pin 7)	V _{CC} = 5 V, Attenuation: Generator under test = 0 dB All other generators = 30 dB	260			mV
lcc	Supply current			1	30	50	mA
		2 dB NOM		1	2	3	
	Attonuction	4 dB NOM		3	4	5	-
	Adendation	8 dB NOM	See Table 1	7	8	9	aв
		16 dB NOM			16	17	
Ci	Input capacitance					15	pF

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C.

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$

	PARAMETER	PARAMETER TEST CONDITIONS				UNIT
^t PHĽ	Propagation delay time, high-to-low level RDY output from CE			90	150	ns
^t PHL	Propagation delay time high-to-low level, RDY output from WE	$C_L = 225 \text{ pF}, \text{ R}_L = 2 \text{ k}\Omega \text{ to } V_{CC}$	90			ns
^t PLH	Propagation delay time low-to-high level, RDY output from CLK			90		ns

#### PARAMETER MEASUREMENT INFORMATION



FIGURE 1. tPHL TEST CIRCUIT

TEXAS VI INSTRI MENTS POST OFFICE 80X 655012 · DALLAS, TEXAS 75265 **Special Functions** 

4-75

#### SN76494, SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

SIGNATURE	PIN	1/0	DESCRIPTION
CE	6	t	Chip Enable. When chip enable is low, the device is operational, input terminals are enabled, and data may be entered.
D0 (MSB)	3	1	
D1	2	1	
D2	1	Ĩ.	
D3	15	1	
D4	13	1	Du through D7 – Input data bus
D5	12	1	
D6	11	1	
D7 (LSB)	10	1	
Vcc	16	1	Supply voltage (5 V nom)
GND	8	0	Ground reference
CLOCK	14	1	Input Clock
WE	5	T	Write Enable. When CE is enabled and WE is active (low), Input on the data bus is accepted. CE and WE must be held low until READY returns high (four clock cycles for the SN76494 and SN76494A or 32 clock cycles for the SN76496 and SN76496A). If WE remains low throughout four additional clock cycles for the SN76494 and SN76494A (32 clock cycles for the SN76496 and SN76496A) a new write cycle will be initiated.
READY	4	0	When low, READY indicates that a write cycle is in progress; data on the input bus must remain valid until READY returns high.
AUDIO IN	9	Π	Audio input from external source
AUDIO OUT	7	0	Audio Drive Out

#### pin assignments and functions

#### PRINCIPLES OF OPERATION

#### tone generators

Each tone generator consists of a frequency synthesis section and an attenuation section. The frequency synthesis section requires 10 bits of information (F0-F9) to define half the period of the desired frequency (f). F0 is the most significant bit and F9 is the least significant bit. This information is loaded into a 10-stage tone counter, which counts down at an N/2 rate where N is the input clock frequency. When the tone counter counts down to zero, a borrow signal is produced. This borrow signal toggles the frequency flip-flop and also reloads the tone counter. Thus, the period of the desired frequency is twice the value of the period register.

The frequency can be calculated by the following:

$$f = \frac{N}{4n}$$
 for SN76494 and SN76494A, or  $f = \frac{N}{32n}$  for SN76496 and SN76496A

where N = clock in Hz n = 10-bit binary number

The output level of each tone/noise generator may be selected by programming a four stage attenuator. The attenuator values, along with their bit position in the data word, are shown in Table 1. Multiple attenuation control bits may be true simultaneously. Thus, the maximum attenuation is 30 dB.



#### SN76494. SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

#### TABLE 1. ATTENUATION CONTROL

E	SIT PO	SITIO	OSITION		
A0	0 A1 A2		A3	(in dB)	
0	0	0	1	2	
0	0	1	0	4	
0	1	0	0	8	
1	0	0	0	16	
1	1	1	1	OFF	

#### noise generator

The noise generator consists of a noise source and an attenuator. The noise source is a shift register with an exclusive OR-feedback network. The feedback network has provisions to protect the shift register from being locked in the zero state.

#### TABLE 2. NOISE FEEDBACK CONTROL

FEEDBACK	CONFIGURATION
0	"Periodic" noise
1	"White" noise

Whenever the noise control register is changed, the shift register is cleared. The shift register will shift at one of four rates as determined by the two NF bits. The fixed shift rates are derived from the input clock.

#### TABLE 3. NOISE GENERATOR FREQUENCY CONTROL

BI	TS	CUUET DATE	
NFO	NF1	SHIFTHATE	
0	0	N/64	
0 1		N/128	
1 0		N/256	
1 1		Tone generator #3 output	

The output of the noise source is connected to a programmable attenuator as shown in Figure 4.

#### output buffer/amplifier

The output buffer is a conventional operational amplifier summing circuit. It sums the three tone generator outputs, the noise generator output, and any audio input through pin 9. The output buffer will generate up to 10 mA.

To prevent oscillations in the output buffer, the output (pin 7) should be decoupled. This is done by putting 10 ohms in series with 0.1  $\mu$ F from pin 7 to ground (see Figure 3).

#### data transfer

The microprocessor selects the SN76494, SN76494A, SN76496A, or SN76496A by taking  $\overline{CE}$  low (low voltage). Unless  $\overline{CE}$  is low, no data transfer can occur. When  $\overline{CE}$  is low, the  $\overline{WE}$  signal strobes the contents of the data bus to the appropriate control register. The data bus contents must be valid at this time.



#### SN76494, SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

The SN76494 and SN76494A require approximately 4 clock cycles to load the data into the control register. The SN76496 and SN76496A require approximately 32 clock cycles. The open-collector READY output is used to synchronize the microprocessor to this transfer and is pulled to the false state (low) immediately following the falling edge of  $\overrightarrow{CE}$  (or  $\overrightarrow{WE}$  when data transfer is initiated by  $\overrightarrow{WE}$ ). READY will go high upon completion of the data transfer cycle. The data transfer timing is shown below.



TWE must be returned high (inactive) within 4 clock pulses for the SN76494 and SN76494A (32 clock pulses for the SN76496 and SN76496A) after RDY returns high. Otherwise, a new data transfer cycle will be initiated.

#### FIGURE 2. DATA TRANSFER TIMING

#### INPUTS OUTPUT This table is valid when the ĈĒ WE READY device is: L (1) not being clocked, and L L (2) is initialized by pulling WE L Н Ł н and CE high. н L н н н





4

#### CPU interface to SN76494, SN76494A, SN76496 or SN76496A

The microprocessor interfaces with the SN76494, SN76494A, SN76496, or SN76496A by means of the 8 data lines and 3 control lines (WE, CE and READY). Each tone generator requires 10 bits of information to select the frequency and four bits of information to select the attenuation. A frequency selection requires a double-byte transfer, while an attenuator selection requires a single-byte transfer.

If no other control registers on the chip are accessed, a tone generator may be rapidly updated by initially sending both bytes of frequency and register data, followed by just the second byte of data for succeeding values. The register address is latched on the chip, so the data will continue going into the same register. This allows the six most significant bits to be quickly modified for frequency sweeps.

#### control registers

The devices have 8 internal registers that are used to control the 3 tone generators and the noise source. During all data transfers to the devices, the first byte contains a 3-bit field that determines the destination control register. The register address codes are shown in Table 5.

RO	R1	R2	DESTINATION CONTROL REGISTER	
0	0	0	Tone 1 Frequency	
0	0	1	Tone 1 Attenuation	
0	1	0	Tone 2 Frequency	
0	1	1	Tone 2 Attenuation	
1	0	0	Tone 3 Frequency	
1	0	1	Tone 3 Attenuation	
1	1	0	Noise Control	
1	1	1	Noise Attenuation	

#### TABLE 5. REGISTER ADDRESS FIELD

#### data formats

The formats required to transfer data are shown below.



### SN76494, SN76494A, SN76496, SN76496A PROGRAMMABLE TONE/NOISE GENERATOR

#### TYPICAL APPLICATION DATA



NOTE 3: The capacitance values of C1 and C2 are determined by the frequency response desired and the audio amplifier used.





NOTES: 4. The data lines must be latched so that the data remains on them at least 32 clock cycles for the SN76496 and SN76496A or (4 clock cycles for the SN76494 and SN76494A) after the select line goes low.

5. The select pulse should be a negative-going pulse with minimum duration of 150 ns.

#### FIGURE 4. MICROCOMPUTER PARALLEL PORT INTERFACE



#### TL010I, TL010C **ADJUSTABLE RATIO CURRENT MIRRORS**

D2738, SEP ** R -REVISED APRIL 1988

•	33 Distinct Input-to-Output Emitter Ratios from 3:1 to 1:15	P DUAL-IN-LINE PACKAGE (TOP VIEW)
•	Wide Input current Range: 1 μA to 3 mA	
•	35-Volt Output Capability	12E 📑 3 6 🗍 O2E O8E 🛛 4 5 🗍 O4E

**High Output Impedance** 

#### description

The TL010 is a Wilson current mirror that provides output current in a selectable fixed ratio to the input current. The ratio is substantially independent of changes in load, voltages, and temperature. Selecting the ratio consists of connecting appropriate input-emitter pins and output-emitter pins to ground as shown in Figure 1.

The TL010 is designed to operate with up to 3 mA input current if all three input-emitter pins are used. It will also operate at voltages up to 35 V.

The TL010I is characterized for operation from -40 °C to 85 °C. The TL010C is characterized for operation from 0°C to 70°C.

#### typical values of current ratio at TA = 25°C[†]

EMITTER RATIO	CURRENT RATIO	EMITTER RATIO	CURRENT RATIO	EMITTER RATIO	CURRENT RATIO
1.15	14.1	1:6	5.78	3:8	2.61
1:14	13.2	2:11	5.34	2:5	2.43
1:13	12.3	1:5	4.82	3:7	2.26
1:12	11.4	3:14	4.53	1:2	1.98
1:11	10.5	2:9	4.38	3:5	1.64
1:10	9.55	3:13	4.21	2:3	1.45
1:9	8.62	1:4	3.89	3:4	1.32
1:8	7.72	3:11	3.57	1:1	0.99
2:15	7.23	2:7	3:40	3:2	0.663
1:7	6:71	3:10	3:25	2:1	0.50
2:13	6.29	1:3	2.90	3:1	0.332

[†]m is the number of input emitters used, n is the number of output emitters used.

#### schematic



1 9-110 TIAN 54 54 Securents contain information (L) 1-3 4 (1) -1 on dete. Products conform to spannioutions par the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1983, Texas Instruments Incorporated

#### TL010I, TL010C Adjustable-ratio current mirrors

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Output voltage (see Note 1)	45 V
Input current	5 mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2)	725 mW
Operating free-air temperature range: TL010I	-40°C to 85°C
TL010C	. 0°C to 70°C
Storage temperature range	35°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. Input and output voltages are with respect to the common terminal. Neither voltage should be more negative than -0.3 V. 2. For operation above 25 °C free-air temperature, derate linearly at the rate of 8.0 mW/°C.

#### recommended operating conditions

	TL	0101	TLO	10C	-
	MIN	MAX	MIN	MAX	UNIT
Output voltage, VO	5	კი	5	55	V
Input voltage, VI	0.6	1.7	0.65	1.6	v
Input current per input emitter, I	0.001	1	0.001	1	mA
Operating free-air temperature, TA	-40	85	0	70	°C

electrical characteristics over recommended ranges of operating free-air temperature and output voltage (unless otherwise noted)

					TL010	1	1.0	TL010C			
	PARAMETER	TEST CONDITION	UNS	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT	
		$l_j = m \times 1 \mu A$			1			1			
		$l_1 = m \times 10 \mu A$			1.1			1.1			
VI	Input voitage	lj = m × 100 μA			1.25			1.25			
		$l_{I} = m \times 1 mA$		10.00	1.4			1.4			
			m:n = 1:8	6.97	7.72	8.13	7.05	7.72	8.13		
		a Carlos I	m:n = 1:4	3.61	3.89	4.05	3.64	3.89	4.05		
hr	Current ratio (IO/II)	$I_{I} = MIN to MAX$	m:n = 1:2	1.84	1.98	2.07	1.88	1.98	MAX       MAX       1       5       4       2       8.13       4.05       3       3       1.04       0       1.05       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		
	and the state of		m:n = 1:1	0.89	0.99	1.08	0.94	0.99			
				m:n = 2:1	0.46	0.50	0.56	0.475	0.50	0.525	
αhF	Temperature coefficient of current ratio	$i_{\rm f}$ = MIN to MAX			300			300		ppm/°C	
-	Output-to-input isolation	II = MIN to MAX,	f = 1  kHz	60			60			dB	
	Output threshold O(th) voltage §		TA = ::.			1.1			1.05		
VO(th)		$I_{I} = MIN to MAX$	T _A =			1	1.0		1	v	
			$l_1 = m \times 10 \mu A$	-	200 m/n			200 m/n			
ro	Output resistance¶	F = 1 kHz	$I_{I} \approx m \times 100 \mu A$		20 m/n			20 m/n		MD	
		li = m >		1.00	2 m/n			2 m/n			
f _{max}	Maximum operating frequency#	$I_{j} = m \times 1 mA, R$	L = 500 Ω		10			10		MHz	

[†] m is the number of input emitters, n is the number of output emitters. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at T_A = 25 °C.

§Output threshold voltage is the voltage at which the current ratio is equal to 90% of its value at  $V_0 = 15 V$ .

The output resistance is directly proportional to the number of input emitters divided by the number of output emitters (m/n). #Maximum operating frequency is the frequency at which the output current is down 3 dB from its low-frequency value.





NOTES: 3. Selected emitters must be grounded as close as possible to the package to avoid unstable device behavior. Using the fixed-Beta model, the current ratio for a current mirror of m input emitters and n output emitters may be calculated as

$$\frac{10}{1} = \frac{\beta^2 n + \beta(n + m)}{\beta^2 m + (\beta + 1) (m + n)}$$

Second-order effects, such as on-chip self-heating, may slightly perturb the observed ratio from the calculated value. 4. At high current levels, a small capacitor (270 pF) may be required between the input and output terminals to improve stability.







In the application shown in Figure 2, the problem is to measure a precise volume of liquid flowing through a line and shut off the flow with a relay when limit is reached. For the particular volume to be measured and the pressure detector used, a current gain of 11.9 is required. By setting the TL010 for a gain of 10 with the emitter selection, the exact gain of 11.9 may be obtained by adjusting the pressure-time product control.



4-83



#### SERIES TL011, TL012, TL014A, TL021 FIXED-RATIO N-P-N CURRENT MIRRORS

(TOP VIEW)

0

Ð

0

INPUT

COMMON

OUTPUT

D2614, FEBRUARY 1984-REVISED OCTOBER 1988

- Wide Input Current Range: 1 μA to 1 mA
- 35-Volt Output Capability
- High Output Impedance
- Current-Ratio Tolerances Over Full Temperature Range; ±8% for I Suffix ±7% for C Suffix
- Typically Less Than ±1% Error at 25°C

ļ	TEMPERATURE	INPU	T-TO-OUTP	UT CURRENT	RATIO	
	RANGE	1:1	1:2	1:4	2:1	
	-40°C to 85°C	TL0111	TL0121	1000	TL0211	
	0°C to 70°C	TL011C	TL012C	TL014AC	TL021C	

#### description

The TL011, TL012, TL014A, and TL021 are Wilson current mirrors with output currents in fixed proportion to the input currents and substantially independent of changes in voltage, load, and temperature. These devices make use of the tight matching properties of identical bipolar transistors on a monolithic integrated circuit chip to achieve current-ratio accuracy typically better than 98%.

Current mirrors are used extensively in linear integrated circuit designs as active loads for operationalamplifier stages and as current sources for other stages. The TLO11 family gives the designer this same capability with no sacrifice in accuracy or stability.

The TL011, TL012, and TL014A are designed to operate with input currents up to 1 mA and output voltage up to 35 V. The TL021 is designed for 2 mA and 35 V.

#### schematics



PRODUCTION DATA documents contain information current as of a the tation date. Products conform to specifications put the terms of Texas instruments standard warrenty. Production processing does not necessarily include testing of all perameters.



#### SERIES TL011, TL012, TL014A, TL021 FIXED-RATIO N-P-N CURRENT MIRRORS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Output voltage (see Note 1)
Input current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2) 775 mW
Operating free-air temperature range: TL011I, TL012I, TL021I 40°C to 85°C
TL011C, TL012C, TL014AC, TL021C 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

NOTES:1. Input and output voltages are with respect to the common terminal. Neither voltage should be more negative than -0.3 V.
2. For operation above 25 °C free-air temperature, derate linearly at the rate of 6.2 mW/°C. The LP package dissipation rating was based on thermai resistance, R_{θJA}, measured in still air with the device mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in.) above the socket.

#### recommended operating conditions

		TLO	!	TLO_	_C, AC	LIMIT
		MIN	MAX	MIN	MAX	UNIT
Output voltage, VO		5	:0	5	35	v
Include an annual day	T_2.1	0.002	2	0 002	2	
input current, IO	An others	0.001	1	c . · —	1	mA
Operating free-air temperate	ure, TA	-40	85	0	70	°C





					TL011					-	TLO14A			TL021	_	-
	PARAMETER	TEST COND	SNOLL	MIN	TYPT	MAX	NIN	1-1-1	MAX	WIN	TVP1	.v.4	NIN	TYP [†] M	AX	
		II = 1 µA			-			-			-	-				
		II = 2 μA												-		
		II = 10 MA			1.1			1.1			1.1					
		II = 20 MA												11		M
_	input voitage	I ₁ = 100 µA			1.25			1.25			1.25					>
		II = 200 #A												1 25		
		l ₁ = 1 mA			1.4			1.4			1.4					
		l ₁ = 2 mA												14		
	Current ratio TLO_1			0.92	-	1.08	1.84	2	2 16	3.68	4	4.32	0.46	0.5 n	E.A	
y.	(10/1) TLO_C, AC	I = MIN TO MAA		0.93	-	1.07	1.86	2	2 14	3.72	4	4.28	0.465	0.5 (	_	
堆	Temperature coefficient of current ratio	If = MIN to MAX			50			100			200			200		Do /udd
	Output-to-input Isolation	$I_{j} = MIN to MAX,$	f = 1  kHz	80			80			80			80			8
	Output TLO_J		TA = -40°C			1.35			1 35			1 35		-	.35	
(otth)	threshold TLO_C, AC	II = MIN to MAX	TA = 0°C			1.25			1.25			1.25		L .	.25	>
	voltage [§] All		TA = 25°C			1.2			1.2			1.2			1.2	
			$I_{I} = 10 \mu A$		200			100			50					
			$i_1 = 20 \mu A$											200		
			I1 = 100 µA		20			10			S					OV4
•	Output resistance	1 = 1 KHZ	II = 200 µA											20		TIM
			l ₁ = 1 mA		2			۲			0.5					
			l ₁ = 2 mA											2		
wax	Maximum operating frequency1	l _l = MAX	RL = 500 Ω		10			10			10			10		MHz

. . tiv to

TEXAS

For test conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions Sourput threshold voltage is the voltage at which the current ratio is equal to 90% of its value at  $V_0 = 15$  V. Maximum operating frequency is the frequency at which the output current is down 3 dB from its low frequency value.

# SERIES TL011, TL012, TL014A, TL021 Fixed-ratio N-P-N current mirrors

4

#### SERIES TL011, TL012, TL014A, TL021 FIXED-RATIO N-P-N CURRENT MIRRORS



**TYPICAL CHARACTERISTICS** 



#### SERIES TLO11, TLO12, TLO14A, TLO21 FIXED-RATIO N-P-N CURRENT MIRRORS

#### TYPICAL APPLICATIONS INFORMATION



#### FIGURE 5. BASIC CURRENT BUFFER



Idle condition:  $P_D = 1.5$  mW typical On condition:  $P_D = 12.5$  mW typical 10  $\mu$ A from phototransistor provides a V_O swing of 10 V at 1 mA.











D OR P PACKAGE

D2790, JUNE 1985-REVISED OCTOBER 1988

- Low Output Common-Mode Sensitivity to AGC Voltages
- Input and Output Impedances Independent of AGC Voltage
- Peak Gain . . . 38 dB Typ
- Wide AGC Range . . . 50 dB Typ
- 3-dB Bandwidth . . . 50 MHz
- Other Characteristics Similar to NE592 and uA733

#### description

This device is a monolithic two-stage video amplifier with differential inputs and outputs.

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pin. No external frequency compensation components are required.

symbol

(1)

INI+

IN- (8)

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL026C is characterized for operation from 0°C to 70°C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 8 V
Supply voltage, VCC- (see Note 1)
Differential input voltage ±5 V
Common-mode input voltage ±6 V
Output current
Continuous total power dissipation
Operating free-air temperature
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

NOTE 1: All voltages are with respect to the midpoint between V_{CC+} and V_{CC-} except differential input and output voltages.

#### DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	ABOVE T _A = 25°C DERATING FACTOR	TA = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
_P	1000 mW	8.0 mW/ °C	640 mW



4



(4)

(5) OUT-

OUT+

#### TL026C DIFFERENTIAL VIDEO AMPLIFIER WITH AGC

#### recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	3	6	8	V
Supply voltage, V _{CC} _	- 3	-6	- 8	V
Operating free-air temperature, T _A	0		70	°C

# electrical characteristics at 25 °C operating free-air temperature, $V_{CC\pm} = \pm 6 V$ , $V_{AGC} = 0$ , REF OUT pin open (unless otherwise specified)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	түр	MAX	UNIT
AVD	Large-signal differential voltage amplification	1	$V_{O(PP)} = 3 V, R_L = 2 k\Omega$	65	85	105	V/V
ΔAVD	Change in voltage amplification	1	$V_{IPP} = 28.5 \text{ mV}, \text{ R}_{L} = 2 \text{ k}\Omega,$ $V_{AGC} - V_{ref} = \pm 180 \text{ mV}$		- 50		dB
V r	Voltage at REF OUT		$l_{ref} = -1 \text{ mA to } 100 \ \mu\text{A}$	1.3		1.5	٧
- 4	Bandwidth (-3 dB)	2	$V_{O(PP)} = 1 V, V_{AGC} - V_{ref} = \pm 180 \text{ mV}$		50	63.2	MHz
10	Input offset current				0.4	5	μA
IB	Input bias current	[]			10	30	μA
VICR	Common-mode input voltage range	3		± 1			v
Voc	Common-mode output voltage	1	RL = ∞	3.25	3.75	4.25	٧
∆Voc	Change in common-mode output voltage	1	$V_{AGC} = 0$ to 2 V, $R_L = \infty$			300	mV
Voo	Output offset voltage	1	$V_{ID} = 0, R_L = \infty$			0.75	V
VO(PP)	Maximum peak-to-peak output voltage swing	1	$R_{L} = 2 k\Omega$	3	4		v
ri	Input resistance at AGC, IN+, or IN-			10	30		kΩ
ro	Output resistance				20		Ω
CMRR	Common-mode rejection ratio	3 3	$V_{IC} = \pm 1 V, f = 100 \text{ kHz}$ $V_{IC} = \pm 1 V, f = 5 \text{ mHz}$	60	86 60		dB
KSVR	Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO} )	4	$\Delta V_{CC+} = \pm 0.5 V,$ $\Delta V_{CC-} = \pm 0.5 V$	50	70		dB
v _n	Broadband equivalent noise voltage	4	BW = 1 kHz to 10 MHz		12		μV
t _{pd}	Propagation delay time	2	$\Delta V_0 = 1 V$		6	10	ns
tr	Rise time	2	$\Delta V_0 = 1 V$		4.5	12	ns
Isink(max)	Maximum output sink current		$V_{ID} = 1 V, V_{O} = 3 V$	3	4		mA
ICC.	Supply current		No load, No signal		22	27	mA



electrical	characteristics over recommended operating free-air temperature range,	VCC±	-	±6 V,
VAGC =	0, REF OUT pin open (unless otherwise specified)	107.55		

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	түр	мах	UNIT
AVD	Large-signal differential voltage amplification	1	$V_{O(PP)} = 3 V, R_{L} = 2 k\Omega$	55		115	VIV
10	Input offset current					6	μA
IIB	Input bias current				_	40	μA
VICR	Common-mode input voltage range	3		±1			V
Voo	Output offset voltage	1	$V_{ID} = 0, R_L = \infty$			1.5	V
VO(PP)	Maximum peak-to-peak output voltage swing	1	$R_L = 2 k\Omega$	2.8			V
rj	Input resistance at AGC, IN+, or IN-			8			kΩ
CMRR	Common-mode rejection ratio	3	$V_{IC} = \pm 1 V, f = 100 \text{ kHz}$	50			dB
<b>k</b> SVR	Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO} )	4	$\Delta V_{CC+} = \pm 0.5 V,$ $\Delta V_{CC-} = \pm 0.5 V$	50			dB
(sink(max)	Maximum output sink current		$V_{ID} = 1 V, V_{O} = 3 V$	2.8	4		mA
lcc	Supply current	1	No load, No signal			30	mA

PARAMETER MEASUREMENT INFORMATION









FIGURE 2







#### TL026C DIFFERENTIAL VIDEO AMPLIFIER WITH AGC



#### TYPICAL CHARACTERISTICS





#### gain characteristics

Figure 5 shows the differential voltage amplification versus the differential gain-control voltage (V_{AGC} - V_{ref}). V_{AGC} is the absolute voltage applied to the AGC input and V_{ref} is the dc voltage at the REF OUT output. As V_{AGC} increases with respect to V_{ref}, the TL026C gain changes from maximum to minimum. As shown in Figure 5 for example, V_{AGC} would have to vary from approximately 180 mV less than V_{ref} to approximately 180 mV greater than V_{ref} to change the gain from maximum to minimum. The total signal change in V_{AGC} is defined by the following equation.

 $\Delta V_{AGC} = V_{ref} + 180 \text{ mV} - (V_{ref} - 180 \text{ mV})$  (1)  $\Delta V_{AGC} = 360 \text{ mV}$ 

However, because VAGC varies as the ac AGC signal varies and also differentially around V_{ref}, then VAGC should have an ac signal component and a dc component. To preserve the dc and thermal tracking of the device, this dc voltage must be generated from V_{ref}. To apply proper bias to the AGC input, the external circuit used to generate VAGC must combine these two voltages. Figures 6 and 7 show two circuits that will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete AGC systems.

#### circuit operation

Amplifier A1 amplifies and inverts the rectified and filtered AGC signal voltage V_C producing output voltage V1. Amplifier A2 is a differential amplifier that inverts V1 again and adds the scaled V_{ref} voltage. This conditioning makes V_{AGC} the sum of the signal plus the scaled V_{ref}. As the signal voltage increases, V_{AGC} increases and the gain of the TLC026C is reduced. This maintains a constant output level.

#### feedback circuit equations

Following the AGC input signal (Figures 6 and 7) from the OUT output through the feedback amplifiers to the AGC input produces the following equation:

1. AC output to diode D1, assuming sinusoidal signals

 $V_0 = V_{OP} (sin (wt))$ 

where:

 $VOP = peak voltage of V_0$ 

2. Diode D1 and capacitor C1 output

$$V_c = V_{OP} - V_F$$

where:

- $V_F$  = forward voltage drop of D1  $V_C$  = voltage across capacitor C1
- 3. A1 output

$$V1 = -\frac{R2}{R1} V_{c}$$

(4)



4

**Special Functions** 

(2)

(3)

$$V_{AGC} = \frac{R2}{R1} V_{c} + 2 \frac{R6}{R5 + R6} V_{ref}$$
(5)

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL026C AGC pin consists of an AGC signal equal to:

$$\frac{R2}{R1}V_{c}$$
(6)

and a dc voltage derived from Vref, defined as the quiescent value of VAGC.

$$V_{AGC}(q) = 2 \frac{R6}{R5 + R6} V_{ref}$$
(7)

For the initial resistor calculations,  $V_{ref}$  is assumed to be typically 1.4 V making quiescent VAGC approximately 1.22 V (VAGC(q) =  $V_{ref}$  – 180 mV). This voltage allows the TL026C to operate at maximum gain under no-signal and low-signal conditions. In addition, with  $V_{ref}$  used as both internal and external reference, its variation from device to device automatically adjusts the overall bias and makes AGC operation essentially independent of the absolute value of  $V_{ref}$ . The resistor divider needs to be calculated only once and is valid for the full tolerance of  $V_{ref}$ .

#### output voltage limits (see Figures 6 and 7)

The output voltage level desired must fall within the following limits.

- 1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-k $\Omega$  load resistor, the user-selected design limit for the peak output swing should not exceed 1.5 V.
- The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is used, this voltage is approximately 0.7 V. The output voltage V₀ must have sufficient amplitude to exceed the rectifying diode drop. A schottky diode can be used to reduce the V₀ level required.

#### gain calculations for a peak output voltage of 1 V

A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between the limits of conditions 1 and 2 in the preceding paragraph.

Using equation 3 ( $V_c = V_{OP} - V_d$ ),  $V_c$  is calculated as follows:

$$V_{c} = 1 V - 0.7 V$$
  
 $V_{c} = 0.3 V$ 

Therefore, the gain of A1 must produce a voltage V1 that is equal to or greater than the total change in  $V_{AGC}$  for maximum TL026C gain change.

With a total change in VAGC of 360 mV and using equation 4, the calculation is as follows:

$$-\frac{V1}{V_{c}} = \frac{\Delta V_{AGC}}{V_{c}} = \frac{R2}{R1} = \frac{0.36}{0.3} = 1.2$$

If R1 is 10 k $\Omega$ , R2 is 1.2 times R1 or 12 k $\Omega$ .



Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in Figures 6 and 7 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature variations of the diode and minimum output voltage specification.

The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about 32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.

#### considerations for the use of the TL026C

To obtain the most reliable results, RF breadboarding techinques must be used. A groundplane board should be used and power supplies should be bypassed with 0.1- $\mu$ F capacitors. Input leads and output leads should be as short as possible and separated from each other.

A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL026C and, while the circuit is in the AGC mode, the output signal may become distorted.

To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider technique shown in Figure 6 should be used.



NOTE:  $V_{CC+} = 6 V$  and  $V_{CC-} = -6 V$  for TL026C and amplifiers A1 and A2.

FIGURE 6. TYPICAL APPLICATION CIRCUIT WITH NO ATTENUATION



4

#### TL026C DIFFERENTIAL VIDEO AMPLIFIER WITH AGC







- Low Output Common-Mode Sensitivity to AGC Voltages
- Input and Output Impedances Independent of AGC Voltage
- Wide AGC Range . . . 50 dB Typ
- 3-dB Bandwidth . . . 50 MHz
- Other Characteristics Similar to NE592 and uA733

DEVICE FEATURES

	GAIN	AGC
Gain Option 1	50 dB	50 dB
Gain Option 2	38 dB	50 dB

#### description

This device is a monolithic two-stage video amplifier with differential inputs and outputs.

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-



NC No internal connection

symbol



source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pins. No external frequency compensation components are required.

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers for which a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL027M is characterized for operation over the full military temperature range of -55 °C to 125 °C. The TL027C is characterized for operation from 0 °C to 70 °C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC+ (see Note 1) 8 V
Supply voltage, V _{CC} – (see Note 1)
Differential input voltage
Common-mode input voltage ±6 V
Output current
Continuous total power dissipation 500 mW
Operating free-air temperature: TL027M 55 °C to 125 °C
TL027C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

NOTE 1: All voltage values are with respect to the midpoint between V_{CC+} and V_{CC-} except differential input and output voltages.

#### recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}		3	6	8	٧
Supply voltage, V _{CC} _		-3	-6	-8	V
Organization from all temperature T	TL027M	- 55		125	
operating free-air temperature, 1A	TL027C	0		70	-C

electrical characteristics at 25 °C operating free-air temperature,  $V_{CC\pm} = \pm 6$  V,  $V_{AGC} = 0$ , REF OUT pin open (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	GAIN OPTION [†]	MIN	түр	MAX	UNIT
AVD	Large-signal differential	1	$V_{O(PP)} = 3 V, R_L = 2 k\Omega$	1	200		400	V/V
ΔAVD1	Change in voltage amplification	1	$V_{i(PP)} = 7.5 \text{ mV}, \text{ R}_{L} = 2 \text{ k}\Omega,$ $V_{AGC} - V_{ref} = \pm 180 \text{ mV}$	1	05	- 50	108	dB
4AVD2	Change in voltage amplification	1	$V_{I(PP)} = 28.5 \text{ mV}, \text{R}_{L} = 2 \text{ k}\Omega,$ $V_{AGC} - V_{ref} = \pm 180 \text{ mV}$	2		- 50		dB
Vref	Voltage at REF OUT		Iref = 1 mA to 100 µA	1	1.3	1.1.1	1.5	V
BW	Bandwidth (-3 dB)	2	$V_{O(PP)} = 1 V,$ $V_{AGC} - V_{ref} = \pm 180 \text{ mV}$	1 2		20 50		MHz
lio	Input offset current			1 or 2		0.4	5	μA
liB	Input bias current	S		1 or 2		10	30	μA
VICR	Common-mode input voltage range	3		2	±1			v
Voc	Common-mode output voltage	1	$R_{L} = \infty$	1 or 2	3.25	3.75	4.25	V
AVOC	Change in common-mode output voltage	1	$V_{AGC} = 0$ to 2 V, R _L = $\infty$	1 or 2			300	mV
Voo	Output offset voltage	1	$V_{ID} = 0, R_L = \infty$	1 or 2			0.75	V
VO(PP)	Maximum peak-to-peak output voltage swing	1	$R_{L} = 2 k\Omega$	1 or 2	3	4		v
ri .	Input resistance			1	10	4		kΩ
-	Output resistance	-			10	20		Ω
<u>'0</u> C:	Input capacitance	-		-		2		oF
	Common-mode	3	$V_{10} = \pm 1 V_{.} f < 100 \text{ kHz}$	2	60	86		
CMRR	rejection ratio	3	$V_{IC} = \pm 1 V_{f} f = 5$	2		60		dB
ks∨R	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO} )	4	$\Delta V_{CC} + = \pm 0.5 V,$ $\Delta V_{CC} - = \pm 0.5 V$	2	50	70		dB
Vn	Broadband equivalent input noise voltage	4	BW = 1 kHz to 10 MHz	1 or 2		12		μV
1.00	Descention delay time	2	$\Delta V_0 = \pm 1 V$	1		7.5		
чрd	Propagation delay time	2		2	1.000	6	10	
t.	Rise time	2	$\Delta V_{O} = \pm 1 V$	1		10.5		ns
ч				2		4.5	12	
Isink(max)	Maximum output sink current		$V_{ID} = 1 V, V_{O} = 3 V$	1 or 2	3	4		mA
ICC .	Supply current	and a set	No load, No signal	1 or 2		22	27	mA

[†] The gain option is selected as follows:

Gain Option 1. . .Gain Adjust pin 1A is connected to pin 1B, pins 2A and 2B are open.

Gain Option 2. . .Gain Adjust pin 2A is connected to pin 2B, pins 1A and 1B are open.

	PARAMETER	TEST FIGURE	TEST CONDITIONS	GAIN OPTION [†]	MIN	ТҮР МАХ	UNIT
A	Large-signal differential	1	N	1	150	450	VM
~VD	voltage amplification		VO(PP) = 3 V, HL = 2 KH	2	55	115	0/0
10	Input offset current			1 or 2		6	μA
IB	Input bias current	开关 四月 2		1 or 2		40	μA
VICR	Common-mode input voltage range	3		2	± 1		v
Voo	Output offset voltage	1	$V_{ID} = 0, R_L = \infty$	1 or 2		1.5	V
VO(PP)	Maximum peak-to-peak output voltage swing	1	$R_L = 2 k\Omega$	1 or 2	2.8		v
ri	Input resistance			2	8		kΩ
CMRR	Common-mode rejection ratio	3	VIC = ±1 V, f < 100 kHz	2	50		dB
<b>KSVR</b>	Supply voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IQ})$	4	$\Delta V_{CC+} = \pm 0.5 V,$ $\Delta V_{CC-} = \pm 0.5 V$	2	50		dB
Isink(max)	Maximum output sink current		$V_{ID} = 1 V, V_0 = 3 V$	1 or 2	2.8	4	mA
ICC	Supply current	1	No load, No signal	1 or 2		30	mA

electrical characteristics over recommended operating free-air temperature range,  $V_{CC\pm} = \pm 6 V$ , VAGC = 0 V, REF OUT pin open (unless otherwise noted)

[†] The gain option is selected as follows:

Gain Option 1. . . Gain Adjust pin 1A is connected to pin 1B, pins 2A and 2B are open.

Gain Option 2. . .Gain Adjust pin 2A is connected to pin 2B, pins 1A and 1B are open.













FIGURE 2







4



#### TYPICAL CHARACTERISTICS







#### gain characteristics

Figure 5 and 6 show the differential voltage amplification versus the differential gain-control voltage (VAGC - V_{ref}). V_{AGC} is the absolute voltage applied to the AGC input and V_{ref} is the dc voltage at the REF OUT output. As V_{AGC} increases with respect to V_{ref}, the TL027C gain changes from maximum to minimum. As shown in Figure 5 for example, V_{AGC} would have to vary from approximately 180 mV less than V_{ref} to approximately 180 mV greater than V_{ref} to change the gain from maximum to minimum. The total signal change in V_{AGC} is defined by the following equation.

 $\Delta V_{AGC} = V_{ref} + 180 \text{ mV} - (V_{ref} - 180 \text{ mV})$  (1)  $\Delta V_{AGC} = 360 \text{ mV}$ 

However, because V_{AGC} varies as the ac AGC signal varies and also differentially around V_{ref}, then V_{AGC} should have an ac signal component and a dc component. To preserve the dc and thermal tracking of the device, this dc voltage must be generated from V_{ref}. To apply proper bias to the AGC input, the external circuit used to generate V_{AGC} must combine these two voltages. Figures 7 and 8 show two circuits that will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete AGC systems.

#### circuit operation

Amplifier A1 amplifies and inverts the rectified and filtered AGC signal voltage  $V_c$  producing output voltage V1. Amplifier A2 is a differential amplifier that inverts V1 again and adds the scaled  $V_{ref}$  voltage. This conditioning makes VAGC the sum of the signal plus the scaled  $V_{ref}$ . As the signal voltage increases, VAGC increases and the gain of the TLC027C is reduced. This maintains a constant output level.

#### feedback circuit equations

Following the AGC input signal (Figures 7 and 8) from the OUT – output through the feedback amplifiers to the AGC input produces the following equations.

1. AC output to diode D1, assuming sinusoidal signals

 $V_0 = V_{OP} (sin (wt))$ 

where:

VOP = peak voltage of Vo

2. Diode D1 and capacitor C1 output

$$V_{c} = V_{OP} - V_{F}$$

where:

 $V_F$  = forward voltage drop of D1  $V_C$  = voltage across capacitor C1

3. A1 output

$$V1 = -\frac{R2}{R1} V_{c}$$



4

**Special Functions** 

(2)

(3)

#### TYPICAL APPLICATION INFORMATION

$$V_{AGC} = \frac{R2}{R1} V_{C} + 2 \frac{R1}{R5 + R6} V_{ref}$$
(5)

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL027C AGC pin consists of an AGC signal equal to:

$$\frac{R2}{R1} V_c \tag{6}$$

and a dc voltage derived from Vref, defined as the quiescent value of VAGC.

$$V_{AGC}(q) = 2 \frac{R6}{R5 + R6} V_{ref}$$
(7)

For the initial resistor calculations,  $V_{ref}$  is assumed to be typically 1.4 V making quiescent VAGC approximately 1.22 V (VAGC(q) =  $V_{ref}$  – 180 mV). This voltage allows the TL027C to operate at maximum gain under no-signal and low-signal conditions. In addition, with  $V_{ref}$  used as both internal and external reference, its variation from device to device automatically adjusts the overall bias and makes AGC operation essentially independent of the absolute value of  $V_{ref}$ . The resistor divider needs to be calculated only once and is valid for the full tolerance of  $V_{ref}$ .

#### output voltage limits (see Figures 7 and 8)

The output voltage level desired must fall within the following limits:

- 1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-k $\Omega$  load resistor, the user-selected design limit for the peak output swing should not exceed 1.5 V.
- The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is used, this voltage is approximately 0.7 V. The output voltage V₀ must have sufficient amplitude to exceed the rectifying diode drop. A schottky diode can be used to reduce the V₀ level required.

#### gain calculations for a peak output voltage of 1 V

A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between the limits of conditions 1 and 2 in the preceding paragraph.

Using equation 3 ( $V_c = V_{OP} - V_d$ ),  $V_c$  is calculated as follows:

$$V_{c} = 1 V - 0.7 V$$
  
 $V_{c} = 0.3 V$ 

Therefore, the gain of A1 must produce a voltage V1 that is equal to or greater than the total change in VAGC for maximum TL027C gain change.

With a total change in VAGC of 360 mV and using equation 4, the calculation is as follows:

$$-\frac{V1}{V_0} = \frac{\Delta V_{AGC}}{V_0} = \frac{R2}{R1} = \frac{0.36}{0.3} = 1.2$$

If R1 is 10 k $\Omega$ , R2 is 1.2 times R1 or 12 k $\Omega$ .



4-104

Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in Figures 7 and 8 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature variations of the diode and minimum output voltage specification.

The circuit values in Figures 7 and 8 will produce the best results in this general application. Because of rectification and device input constraints, the circuit in Figure 7 will not provide attenuation and has about 32 dB of control range. The circuit shown in Figure 8 will have approximately 25% variation in the peak output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is desired, the output of the TL027C can be used for approximately 40 mV of controlled signal.

#### considerations for the use of the TL027C

To obtain the most reliable results, RF breadboarding techinques must be used. A groundplane board should be used and power supplies should be bypassed with 0.1-µF capacitors. Input leads and output leads should be as short as possible and separated from each other.

A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL027C and, while the circuit is in the AGC mode, the output signal may become distorted.

To observe the output signal of TL027C or TL592, low-capacitance FET probes or the output voltage divider technique shown in Figure 7 should be used.



NOTES: A.  $V_{CC+} = 6$  V and  $V_{CC-} = -6$  V for TL027C and amplifiers A1 and A2. B. On the TL027, short pin 3 to pin 12 and pin 4 to pin 11. Connect pins 6 and 9 to ground.

FIGURE 7. TYPICAL APPLICATION CIRCUIT WITH NO ATTENUATION





NOTES: A.  $V_{CC+} = 6$  V and  $V_{CC-} = -6$  V for TL027C and amplifiers A1 and A2. B. On TL027, short pin 3 to pin 12 and pin 4 to pin 11. Connect pins 6 and 9 to ground.

FIGURE 8. TYPICAL APPLICATION CIRCUIT WITH ATTENUATION

- Designed for Use with the TL041 Magnetic Field Pulse Detector
- Wide Bandwidth . . . 20 MHz Typ
- Low Noise . . . Less than 8 μV Typ
- Independently Adjustable Channel Gains . . . Up to 450 Typ
- No Frequency Compensation Required
- Internal Voltage Source Eliminates External Components
- Input Channel Select Pin is Compatible with TTL and CMOS
- Low Power Dissipation . . . 150 mW Typ

#### description

The TLO40 is a two-channel multiplexed video amplifier designed for use with magnetic pulse detectors in streaming tape drives. The circuit design eliminates many external components, and the D package allows substantial reduction in circuit board area. The gain of each channel is a function of the resistance across its gainadjust pins (A-B) with maximum gain occurring when the terminals are shorted.

The V_{CC}(R) pin provides supply voltage decoupling required by some designs. The BIAS OUT pin provides a voltage source for other circuits that is approximately equal to 1/2 V_{CC}.

#### functional block diagram





. . MAR .- Terr RE. - IT DECEMBER 1988



#### CHANNEL SELECT TABLE

SELECT	CHANNEL
SELECT L H	1
н	2



4-107

#### TL040C 2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 14 V
Input voltage range
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

NOTE 1: All voltages except differential voltages are with respect to the ground terminals.

#### recommended operating conditions

Charter and the second s	MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}	10.8	12	13.2	V
Common-mode input voltage nputs),VIC	5	6	7	V
High-level input voltage, SELLC, input, VIH	2			V
Low-level input voltage, SELECT input, VIL			0.8	V
Output sink current (diff outputs), Isink			1.5	mA
Operating free-air temperature, TA	0		70	°C

## electrical characteristics of selected channel at TA = 25 °C, VCC = 12 V, RAB = 0, RL = 2 k $\Omega$ (unless otherwise noted)

	PARAMETER	FIGURE	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
AVD	Large-signal differential voltage amplification	1		300	530	600	v/v
	Channel amplification mismatch	1			1%		
	Large-signal differential voltage attenuation	1	$\Delta V_{I} = 50 \text{ mV}$ on unselected input		60		dB
Voc	Common-mode output voltage	1	RL = ∞		8.5		V
VOPP	Maximum peak-to-peak output voltage swing	1			4		v
BW	Bandwidth (-3 dB)	2			20		MHz
10	Input offset current	1		1	0.1	3	μA
1 _{IB}	Input bias current	1			6	17	μA
VOD	Differential output voltage	1	$R_L = \infty, V_{ID} = 0$		0.2		V
ri	Input resistance (differential inputs)			1	4		kΩ
CMRR	Common-mode rejection ratio	3	$V_{IC} = 5 V \text{ to } 7 V$	60	100		dB
<b>k</b> SVR	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO} )	4	$V_{CC} = 10.8 V \text{ to } 13.2 V$	50	70		dB
Vn	Broadband equivalent input noise voltage	4			<5		μV
liμ	High-level input current, Select input		V _{IH} = 2.7 V			-0.4	mA
4L	Low-level input current, Select input		V _{IL} = 0.4 V			20	μA
tpd	Propagation delay time (differential inputs)	2	$\Delta V_0 = 1 V$		15		пs
tr	Output rise time	2	$\Delta V_0 = 1 V$		20		ns
ICC	Supply current	1			12	15	mA
	Bias output voltage	1		5	6	7	V




### PARAMETER MEASUREMENT INFORMATION

[†]Select input must be at proper logic level to select desired input channel.



# TL040C 2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER



### PARAMETER MEASUREMENT INFORMATION (continued)

,



[†]Select input must be at proper logic level to select desired input channel.





FIGURE 6. READ SIGNAL CIRCUIT FOR A STREAMING TAPE DRIVE





٩

U24 GCA IN -

23 GADJ

22 GADJ

21 EGV

20 EGS

19 GCA OUT +

18 GCA OUT -

17 WC IN +

16 WC IN -

15 WC OUT

14 RC IN +

13 RC IN -

DW OR NT ... PACKAGE

(TOP VIEW)

GCA IN + TI

BIAS 2

AGND 3

VCC1 4

TDF RC 7

VCC2 D9

DGND T10

TPLA

BDOS RC

D3024, AUGUST 1987

- Designed for Signal Processing in Streaming-Tape Memory Units in Combination with TL040 Two-Channel Video Amplifier
- Space-Saving LSI Circuits Include: Two High-Speed Differential Comparators Time-Domain Filter Bidirectional One-Shot Multivibrator Gain-Controlled Video Amplifier with Differential Inputs and Outputs
- Amplifier and Comparator Bandwidth . . . 20 MHz Typical
- Maximum Data Rate at Read Data Pulse (RDP) . . . 1.4 Mb/s Typical
- Available in 300-mil Dual-In-Line and "Small Outline" Plastic Packages

### description

The TL041 is a magnetic tape read signal conditioner designed for use with the TL040 video amplifier. When combined, these devices amplify the low-signal output from a streaming-tape playback head and reconstruct the data as originally written on the tape. The TL041C includes a gain-controlled amplifier, two comparators, read/write select logic, a time-domain filter, and a bidirectional one-shot multivibrator.

The amplifier has differential inputs, differential outputs, and electronic gain control. A special feature of the electronic gain control is the Electronic Gain Select (EGS). When the EGS input is high, the Electronic Gain Voltage (EGV) input is driven low and amplifier gain is determined by the value of the resistor connected between the Gain Adjust (GADJ) pins. When the EGS input is low, the gain set by the resistor is increased by an amount determined by the voltage applied to the EGV pin.

To accommodate different magnetic tape output signal levels, the amplifier gain may be switched by logic at the EGS input, controlled manually with an adjustable voltage at the EGV input, or automatically adjusted with an automatic gain control (AGC) circuit applying a control voltage to the EGV input.

The comparator functions are controlled by a logic input to the Write/Read ( $W/\overline{R}$ ) select input. With the  $W/\overline{R}$  input low, the read comparator output (usually connected as a zero-crossing detector) is sent to the time-domain filter. When  $W/\overline{R}$  is high, the write comparator output is used to provide write amplitude verification in a typical read-after-write function.

The time-domain filter helps to ensure the input data is valid. A capacitor in series with a resistor, connected to the time-domain filter pin (TDF RC), begins charging at the leading edge of an input pulse from the read comparator. If the input pulse does not remain high for one RC time constant, the pulse is considered invalid and no signal is passed to the bidirectional one-shot multivibrator (BDOS). However, if the input pulse remains high for longer than one RC time constant, the pulse is considered valid and the signal is passed through the time-domain filter to trigger the BDOS. When triggered, the BDOS provides a pulse to the Read Data Pulse (RDP) output. The RDP output pulse duration is determined by a resistor-capacitor network connected to the BDOS RC pin.

The TL041C is characterized for operation from 0°C to 70°C.



4-113

4

### functional block diagram



4

Special Functions

FUNCTION TABLE

	and the second second	INPUT CONDITIONS	1000	
EGS	W/R	DIFFERENTIAL INPUTS WRITE OR READ COMPARATOR	I/O NAME	I/O CONDITION
	x	RC IN + > RC IN -	RC OUT	Н
	x	RC IN - > RC IN +	RC OUT	L
	L	x	RC OUT	Input to time-domain filter
	х	WC IN + > WC IN -	WC OUT	н
	x	WC IN - > WC IN +	WC OUT	L
	н	x	WC OUT	Input to time-domain filter
н		x	EGV	L
L		x	EGV	Input



PIN		
NAME	NO.	DESCRIPTION
<i>i</i>	3	Analog ground
BDOS RC	5	Bidirectional one-shot resistor and capacitor
BIAS	2	Output bias voltage
DGND	10	Digital ground
EGS	20	Electronic gain select
EG∨	21	Electronic gain voltage
GCA IN -	24	Gain-controlled amplifier, inverting input
GCA IN +	1	Gain-controlled amplifier, noninverting input
GADJ	22	Gain adjust
GADJ	23	Gain adjust
GCA OUT -	18	Gain-controlled amplifier, inverting output
GCA OUT +	19	Gain-controlled amplifier, noninverting output
RC IN-	13	Read comparator, inverting input
RC IN +	14	Read comparator, noninverting input
RC OUT	12	Read comparator out
RDP	6	Read data pulse
TDF RC	7	Time-domain filter resistor and capacitor
TP	8	Test point
VCC1	4	Analog collector supply voltage
VCC2	9	Digital collector supply voltage
WC IN	16	Write comparator, inverting input
WC IN +	17	Write comparator, noninverting input
WC OUT	15	Write comparator out
W/R	11	Write/read



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage: V _{CC1} (see Note 1) 14 V
VCC2
Input voltage range: Amplifier and comparators AGND - 0.2 V to VCC1 + 0.2 V
Multivibrators and logic AGND - 0.2 V to V _{CC2} +0.2 V
Input current: EGV (see Note 2) ±2 mA
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds

NOTES: 1. All voltages except differential voltages are with respect to network ground terminals (AGND and DGND tied together).
 2. Driving EGV high from a low-impedance source (> ±2 mA capability) with EGS high can result in damage to the device.

DISSIPATION RATING TABLE						
PACKAGE	T _A ≤ 25°C PO <b></b> ii RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C PCALI: RAL I.•			
DW	•• mW	10.8 mW/°C	4 · A			
NT	1700 mW	13.6 mW/°C	1088 mW/°C			

### recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC1		10.0	12	13.2	V
Supply voltage, V _{CC2}		4.5	5	5.5	V
High-level input voltage, VIH	EGS or W/R	2			v
Low-level input voltage, VIL	EGS or W/R			0.8	V
1	•	0	2 A 4	10	v
input voitage, vj				0.8VCC1	v
Common-mode input voltage to gain-control amplifier, VIC			4		V
	WC OUT, RC OUT,				
High-level output current, IOH	TP, or RDP			-400	μn
	WC OUT, RC OUT,				mA
	TP, or RDP				- MA
Pulse duration, tw	TP or I-	40			ns
External timing resistance, (see Note 3)	TDF עם יט OS RC	5		25	kΩ
External timing capacitance	TDF or BDOS RC)	0.01	0.1	1000	nF
Operating free-air temperature, TA		0		70	°C

NOTE 3: Some high resistance and capacitance combinations may produce abnormal output waveforms.



# electrical characteristics at VCC1 = 12 V, VCC2 = 5 V, VIC(GIC) = V_{bias}, R_{ADJ} = 5 k_Ω, EGS at high level, EGV at 0 V, r_i = 50 Ω, R_L = 2 k_Ω, T_A = 25 °C (unless otherwise noted)

### gain-controlled amplifier

	PARAMETER	TEST FIGURE	TEST CONDITIONS		MIN	түр	мах	UNIT
Voo	Output offset voltage	1	$V_{ID} = 0,$	$V_{OD} = V_{O}$		0.35	0.75	V
VOPP	Maximum differential output voltage	1	V _{ID} = 1 V,	V _{OPP} = V _O	3	4		v
			$V_{ID} = 20 \text{ mV},$	: 🦌 nigh	8	14	20	V/V
AVD	Large-signal differential	1	Vid = 20 mV, EGS low	EGV at 4 V		19		V/V
	vonage amplineation		f = 455 kHz	EGV at 9.6 V		90		
CMRR	Common-mode rejection ratio	2	VIC = 2 V to 5 V		60	80		dB
VIC	Common-mode input voltage	2			2	100	5	V
Voc	Common-mode output voltage	1	$V_{ID} = 0$		4	5	6	V
10	Input offset current	1	1 _{1B+} - 1 _{1B-}			0.2	3	μA
10	Output current, sink				1.5	2		mA
liβ	Input bias current	1	$(I_{IB+} + I_{IB-})/2$			5	17	μA
VO(BIAS)	Bias output voltage	1			3	4	5	V
Zo(BIAS)	Bias output impedance					1		kΩ
zi	Input impedance	1999				30		kΩ
BW	Bandwidth (-3 dB)	3				20	1.1.1	MHz
<b>KSVR</b>	Supply voltage rejection ratio	4	V _{CC1} = 10.8 V to 13	3.2 V	50	70		dB
ICC1_	Supply current from VCC1		Vcc1 = 13.2 V,	No signal		32	45	mA

### logic section

	PARAMETER		TEST FIGURE	TEST CON	DITIONS	MIN	түр	МАХ	UNIT
Vон	High-level output voltage			$V_{CC2} = 4.5 V,$ $V_{OH} = -400 \mu A$	$V_{ID} = 0.1 V,$	2.7	3.5		v
VOL	Low-level output voltage			$V_{CC2} = 4.5 V,$ $I_{OL} = 8 mA$	$V_{ID} = 0.1 V,$		260	500	mV
VICR	Common-mode input voltag comparators	e,				2		7	v
Luc	High lovel input ourrest	EGS	1.14	$V_{I(EGS)} = 2.7 V$			120	200	μА
чн	nigh-level input current	W/R		VI(W/R) = 2.7 V				20	
1	Law law law law	EGS	100	$V_{I(EGS)} = 0.4 V$		-		- 20	
ЧL	Low-level input current	W/R		VI(W/R) = 0.4 V				- 400	μΑ
ICC2	Supply current from VCC2	100		V _{CC2} = 5.5 V,	No signal		22	31	mA
	Response time			100-mV step,	5-mV overdrive		50		ns
	Pulse duration of one-shots			$R_{ext} = 5 k\Omega,$	C _{ext} = 1 oF		360		ne
tw	(TP, RDP)			$R_{ext} = 20 k\Omega,$	C _{ext} = 33 pF		460	-	115



### PARAMETER MEASUREMENT INFORMATION







FIGURE 1

FIGURE 3



FIGURE 4



4

### **TYPICAL CHARACTERISTICS**







# TL170C SILICON HALL-EFFECT SWITCH

D2408, DECEMBER 1977, REVISED APRIL 1988

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Solid-State Technology
- Open-Collector Output

### description

The TL170C is a low-cost magnetically operated electronic switch that utilizes the Hall Effect to sense steady-state magnetic fields. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL170C is characterized for operation over the temperature range of 0 °C to 70 °C.

### functional block diagram



FUNCTION TABLE (TA = 25°C)

FLUX DENSITY	OUTPUT
≤ –25 mT	Off
- 25 mT < B < 25 mT	Undefined
≥ 25 mT	On



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Output voltage	. 30 V
Output current	20 mA
Operating free-air temperature range 0°C t	o 70°C
Storage temperature range	150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Magnetic flux density ul	nlimited

NOTE 1. Voltage values are with respect to network ground terminal.

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard wersnaty. Production processing does not necessarily include testing of all parameters.



# TL170C SILICON HALL-EFFECT SWITCH

### electrical characteristics at specified free-air temperature, VCC = 5 V ± 5% (unless otherwise noted)

	PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
BT +	Threshold of positive-going		25°C			25	mT‡
	magnetic flux density		0 to 70°C			35	
BT	Threshold of negative-going		25°C	-265			mT‡
-1-	magnetic flux density [†]		0°C to 70°C				
$B_{T+} - B_{T-}$	Hysteresis		0°C to 70°C		20		mT‡
ЮН	High-level output current	V _{OH} = 20 V	0°C to 70°C	1		100	μA
VOL	Low-level output voltage	$V_{CC} = 4.75 V$ , $I_{OL} = 16 mA$	0°C to 70°C			0.4	V
1	Sumply suggest	Vac = 5 25 V Output low	0.90 += 70.90			6	-
'CC	Supply current	VCC = 5.25 V Output high	0-01070-0			4	mA

[†]Threshold values are those levels of magnetic flux denisity at which the output changes state. For the TL170C, a level more positive than  $B_{T+}$  causes the output to go to a low level and a level more negative than  $B_{T-}$  causes the output to go to a high level. See Figures 1 and 2.

[‡]The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.

[§]The algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for flux-density threshold levels only.

The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.







The positive-going threshold (B_T ₊) may be a negative or positive B level at which a positivegoing (decreasing negative or increasing positive) flux density results in the TL170 output turn-on. The negative-going threshold is a positive or negative B level at which a negative going (decreasing positive or increasing negative) flux density results in the TL170 turning off.

FIGURE 2. REPRESENTATIVE CURVES OF VO vs B

Texas 🖑 Instruments
POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

# TL172C NORMALLY OFF SILICON HALL-EFFECT SWITCH

D2490, AUGUST 1977-REVISED APRIL 1988

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Solid-State Technology
- Open-Collector Output
- Normally Off Switch

### description

The TL172C is a low-cost magnetically operated normally off electronic switch that utilizes the Hall Effect to sense the presence of a magnetic field. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. A magnetic field of sufficient strength in the positive direction will cause the TL172C output to be in a lowimpedance state. Otherwise, the output will present a high impedance. The output of this circuitry connected to many different types of electronic components.

The TL172C is characterized for operation over the temperature range of 0 °C to 70 °C.

### functional block diagram



### FUNCTION TABLE

FLUX DENSITY	OUTPUT
≤ 10 mT	Off
10 mT < B < 60 mT	Undefined
≥ 60 mT	On



# TL172C Normally off Silicon Hall-Effect Switch

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Output voltage	30 V
Output current	. 20 mA
Operating free-air temperature range 0°C	to 70°C
Storage temperature range	to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	. 260°C
Magnetic flux density	unlimited

NOTE 1: Voitage values are with respect to network ground terminal.

electrical characteristics over rated operating free-air temperature range,  $V_{CC} = 5 V \pm 5\%$  (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
B _{T +}	Threshold of positive-going magnetic flux density [†]				60	mT‡
BT -	Threshold of negative-going magnetic flux density [†]		10			mT‡
BT + - BT -	Hysteresis			23		mT‡
юн	High-level output current	V _{OH} = 20 V			100	μA
VOL	Low-level output voltage	V _{CC} = 4.75 V, I _{OL} = 16 mA			0.4	V
ICC	Supply current	V _{CC} = 5.25 V			6	mA

[†]Threshold values are those levels of magnetic flux density at which the output changes state. For the TL172C, a level more positive than  $B_{T+}$  causes the output to go to a low level, and a level more negative than  $B_{T-}$  causes the output to go to a high level. See Figures 1 and 2.

[‡]The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.



The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux amanate from the north pole of a magnet and enter the south pole.

FIGURE 1. DEFINITION OF MAGNETIC FLUX POLARITY



FIGURE 2. REPRESENTATIVE CURVE OF VO vs B



# TL173I, TL173C LINEAR HALL-ELLECT SENSORS

D2526, MARCH 1979-REVISED APRIL 1988

- Output Voltage Linear with Applied Magnetic Field
- Sensitivity Constant Over Wide Operating Temperature Range
- Solid-State Technology
- Three-Terminal Device
- Senses Static or Dynamic Magnetic Fields

### description

The TL173I and TL173C are low-cost magneticfield sensors designed to provide a linear output voltage proportional to the magnetic field they

sense. These monolothic circuits incorporate a Hall element as the primary sensor along with a voltage reference and a precision amplifier. Temperature stabilization and internal trimming circuitry yield a device that features high overall sensitivity accuracy with less then 5% error over its operating temperature range.

The TL173I is characterized for operation from -20°C to 85°C. The TL173C is characterized for operation from 0°C to 70°C.

### functional block diagram



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	25 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	775 mW
Operating free-air temperature range: TL173I	20°C to 85°C
TL173C	0°C to 70°C
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Magnetic flux densisty	unlimited

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate linearly at the rate of 6.2 mW/°C.







# TL173I, TL173C LINEAR HALL-EFFECT SENSORS

### recommended operating conditions

		TL173I			-	TL173C		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		10.8	12	13.2	10.8	12	13.2	V
Magnetic flux density, B				±50	h		1.0	mT
Output aurorat la	Sink			0.5			0.5	
Source				-2			-2	шА
Operating free-air temperature, TA		-20		85	0		70	°C

# electrical characteristics over full range of recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITION	1st	MIN	TYP [‡]	MAX	UNIT
Vo	Output voltage	$I_0 = -2 \text{ mA to } 0.5 \text{ mA},$		5.8	6	6.2	V
ksvs	Supply voltage sensitivity (ΔVIO/ΔVCC)	$B = 0 mT^{\S}$ ,	$T_A = 25^{\circ}C$		18		mV/V
S	Magnetic sensitivity (ΔVO/ΔB)	$B = -50 \text{ to } 50 \text{ mT}^{\$}$ ,	T _A = 25°C	13.5	15	18	V/T§
ΔS	Magnetic sensitivity change with temperature	$\Delta T_A = 25^{\circ}C$ to MIN or MAX				±5	%
ICC	Supply current	B = 0 mT [§] ,	$I_{O} = 0$		8	12	mA
fmax	Maximum operating frequency		Service and Service	1.	100		kHz

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] Typical values are at  $V_{CC} = 12$  V and  $T_A = 25$ °C.

The unit of magnetic flux density in the international System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten, e.g., 50 millitesla = 500 gauss.

# Special Functions



The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

### FIGURE 1. DEFINITION OF MAGNETIC FLUX POLARITY





### OUTPUT VOLTAGE

# **TYPICAL APPLICATION DATA**

The circuit in Figure 3 may be used to set the output voltage at zero field strength to exactly 6 V (using R1), and to set the sensitivity to exactly -15 V/T (using R2), as depicted in Figure 4.





Special Functions

D956, JUNE 1976-REVISED FEBRUARY 1989

- Excellent Dynamic Range
- Wide Bandwidth
- Built-In Temperature Compensation
- Log Linearity (30 dB Sections) . . . 1 dB Typ
- Wide Input Voltage Range

### description

This monolithic amplifier circuit contains four 30-dB logarithmic stages. Gain in each stage is such that the output of each stage is proportional to the logarithm of the input voltage over the 30-dB input voltage range. Each half of the circuit contains two of these 30-dB stages summed together in one differential output that is proportional to the sum of the logarithms of the input voltages of the two stages. The four stages may be interconnected to obtain a theoretical input voltage range of 120 dB. In practice, this permits the input voltage range to be typically greater than 80 dB with log linearity of  $\pm$  0.5 dB (see application data). Bandwidth is from dc to 40 MHz.

This circuit is useful in military weapons systems, broadband radar, and infrared reconnaissance systems. It serves for data compression and analog compensation. This logarithmic amplifier is used in log IF circuitry as well as video and log amplifiers. The TL441AM is characterized for operation over the full military temperature range of -55 °C to 125 °C.





NC-No internal connection

### functional block diagram (one half)



P-in', UL IION DATA documents contain information c arta 1 se of publication date. Products conform to spuchications but the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all personators.



Copyright © 1976, Texas Instruments Incorporated

### schematic



Pin numbers shown are for the J package.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltages (see Note 1): V _{CC+} 8	V
VCC	۷
Input voltage (see Note 1)	٧
Output sink current (any one output)	A
Continuous total dissipation	le

 Operating free-air temperature range
 -55 °C to 125 °C

 Storage temperature range
 -65 °C to 150 °C

 Case temperature for 60 seconds: FK package
 260 °C

 Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
 300 °C

NOTE: 1. All voltages, except differential output voltages, are with respect to network ground terminal.

DISSIPATION RATING TABLE						
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 70°C POWER RATING	T _A = 125°C POWFR RATING	
FK	·· ·nW	11.0 mW/°C	104 °C	500 mW	. `• mW	
J	500 mW	11.0 mW/°C	104 °C	500 mW	275 mW	

### recommended operating conditions

	MIN NOM	MAX	UNIT
Peak-to-peak input voltage for each 30-dB stage	0.01	1	V
Operating free-air temperature, TA	- 55	125	°C



# electrical characteristics, $V_{CC+} = 6 V$ , $V_{CC-} = -6 V$ , $T_A = 25 °C$

PARAMETER	TEST FIGURE	MIN	түр	МАХ	UNIT
Differential output offset voltage	1 1	1	±25	±70	mV
Quiescent output voltage	2	5.45	5.6	5.85	V
acale factor (uniforential output), each 3-dB stage, -35 dBV to -5 dBV	3	7	8	11	mV/dB
AC scale factor (differential output)			8		mV/dB
DC error at - 20 dBV (midpoint of - 35 dBV to - 5 dBV range)	3		1	2.6	dB
Input impedance			500		Q
Output impedance			200		Ω
Rise time, 10% to 90% points, CL = 24 pF	4		20	35	ns
Supply current from V _{CC+}	2	14.5	18.5	23	mA
Supply current from V _{CC} _	2	-6	- 6 -	- 19 =	mA
Power dissipation	2	123	162	2.9	mW

### electrical characteristics over operating free-air temperature range, $V_{CC+} = 6 V$ . $V_{CC-} = -6 V$ (unless otherwise noted)

PARAMETER		TEST FIGURE	MIN	TYP MAX	UNIT
Differential output offset voltage		1	Same Same	±100	mV
cent output voltage			5.3	5.85	V
DC scale factor (differential output) each 30-dB stage, -35 dBV to -5 dBV		3	7	11	mV/dB
TA	= -55°C	•		4	
TA	= 125°C	] 3		3	
Supply current from V _{CC+}		2	10	31	mA
Supply current from V _{CC} _			-4.5	- 15	mA
Power dissipation		2	87	276	mW

### PARAMETER MEASUREMENT INFORMATION



FIGURE 1





### PARAMETER MEASUREMENT INFORMATION







FIGURE 10



### TYPICAL APPLICATION DATA

Although designed for high-performance applications such as broadband radar infrared detection and weapons systems, this device has a wide range of applications in data compression and analog computation.

### basic logarithmic function

The basic logarithmic response is derived from the exponential current-voltage relationship of collector current and base-emitter voltage. This relationship is given in the equation:

m · VBE = In [(IC + ICES)/ICES]

where:

 $I_C$  = collector current  $I_{CES}$  = collector current at  $V_{BE}$  = 0 m = q/kT (in V-1) V_{BE} = base-emitter voltage

The differential input amplifier allows dualpolarity inputs, is self-compensating for temperature variations, and is relatively insensitive to common-mode noise.

### functional block diagram



### logarithmic sections

As can be seen from the schematic, there are eight differential pairs. Each pair is a 15-dB log subsection, and each input feeds two pairs for a range of 30-dB per stage. Four compensation points are made available to allow slight variations in the gain (slope) of the two individual 15-dB stages of input A2 and B2. By slightly changing the voltage on any of the compensation pins from its quiescent value, the gain of that particular 15-dB stage can be adjusted to match the other 15-dB stage in the pair. The compensation pins may also be used to match the transfer characteristics of input A2 to A1 or B2 to B1.

The log stages in each half of the circuit are summed by directly connecting their collectors together and summing through a common-base output stage. The two sets of output collectors are used to give two log outputs, Y and  $\overline{Y}$  (or Z and  $\overline{Z}$ ) which are equal in amplitude but opposite in polarity. This increases the versatility of the device.

By proper choice of external connections, linear amplification, linear attentuation, and many different applications requiring logarithmic signal processing are possible.

### input levels

The recommended input voltage range of any one stage is given as 0.01 V to 1 V. Input levels in excess of 1 V may result in a distorted output. When several log sections are summed together, the distorted area of one section overlaps with the next section and the resulting distortion is insignificant. However, there is a limit to the amount of overdrive that may be applied. As the input drive reaches  $\pm 3.5$  V, saturation occurs, clamping the collector-summing line and severely distorting the output. Therefore, the signal to any input must be limited to approximately  $\pm 3$  V to ensure a clean output.

### output levels

Differential-output-voltage levels are low, generally less than 0.6 V. As demonstrated in Figure 12, the output swing and the slope of the output response can be adjusted by varying the gain by means of the slope control. The coordinate origin may also be adjusted by positioning the offset of the output buffer.

### TYPICAL APPLICATION DATA

### circuits

Figures 12 through 19 show typical circuits using this logarithmic amplifier. Operational amplifiers not otherwise designated are TLC271. For operation at higher frequencies, the TL592 is recommended instead of the TLC271.









# TYPICAL APPLICATION DATA











FIGURE 14. UTILIZATION OF PARALLELED INPUTS





NOTES: A. Inputs are limited by reducing the supply voltages for the input amplifiers to ±4 V. B. The gains of the input amplifiers are adjusted to achieve smooth transistions.

Figure 15. LOGARITHMIC AMPLIFIER WITH INPUT VOLTAGE RANGE GREATER THAN 80 dB







NOTES: A. Connections shown are for multiplication. For division, Z and  $\overline{Z}$  connections are reversed.

- B. Output W may need to be amplified to give actual product or quotient of A and B.
  - C. R designates resistors of equal value, typically  $2 k \Omega$  to  $10 k \Omega$ .

Multiplication:  $W = A \cdot B \Rightarrow \log W = \log A + \log B$ , or  $W = a (\log_a A + \log_a B)$ 

Division:  $W = A/B \Rightarrow \log W = \log A - \log B$ , or  $W = a(\log_a A + \log_a B)$ 

### FIGURE 16. MULTIPLICATION OR DIVISION



NOTE: R designates resistors of equal value, typically 2 kΩ to 10 kΩ. The power to which the input variable is raised is fixed by setting nR. Output W may need to be amplified to give the correct value.

Exponential:  $W = A^n \Rightarrow \log W = n \log A$ , or  $W = a^{(n \log_B A)}$ 

### FIGURE 17. RAISING A VARIABLE TO A FIXED POWER





NOTE: Adjust the slope to correspond to the base "a". Exponential to any base: W = a





FIGURE 19. DUAL-CHANNEL RF LOGARITHMIC AMPLIFIER WITH 50-dB INPUT RANGE PER CHANNEL AT 10 MHz



**4** Special Functions

٠

•

# TL592, TL592A DIFFERENTIAL VIDEO AMPLIFIERS

D2668, NOVEMBER 1983-REVISED MAY 1988

- 8-Pin Version of NE592 . . . Saves Printed Circuit Board Space
- Adjustable Gain to 400
- No Frequency Compensation Required
- Adjustable Passband

DEVICE TYPE	TEMPERATURE RANGE	AVD RANGE (GAIN OPTION 1)
TL592	0°C to 70°C	250-600
TL592A	0°C to 70°C	400-600

### description

This device is a monolithic two-stage video amplifier with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

Fixed differential amplification of nominally 400 may be selected without external components, or amplification may be adjusted from 0 to approximately 400 by the use of a single external resistor connected between the gain adjustment pins A and B. No external frequency-compensating components are required for any gain option.

The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include generalpurpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The TL592 and TL592A are characterized for operation from 0  $^{\circ}\text{C}$  to 70  $^{\circ}\text{C}.$ 

# D OR P PACKAGE (TOP VIEW) IN + 1 0 8 IN -GAIN ADJ A 2 7 GAIN ADJ B VCC - 3 6 VCC + OUT + 4 5 0UT -

symbol



PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications par the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



# TL592, TL592A DIFFERENTIAL VIDEO AMPLIFIERS

schematic



# absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)	8 V
Supply voltage, V _{CC} (see Note 1)	
Differential input voltage	$\dots \pm 5 V$
Voltage range, any input	VCC+ to VCC-
Output current	10 mA
Continuous total power dissipation at 70 °C	500 mW
Operating free-air temperature range	0°C to 70°C
Storage temperature range	. $-65$ °C to $150$ °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: All voltage values except differential input voltages are with respect to the midpoint between V_{CC+} and V_{CC-}.

### recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC +}	3	6	8	V
Supply voltage, V _{CC}	- 3	-6	- 8	V
Operating free-air temperature, TA	0		70	°C


electrical	cnaracteristics at sp				CAIN		TI 692			TI 592A		Γ
	PARAMETER	FIGURE	TEST CONDITION	NS	OPTION	NIN	TYP	MAX	NIN	TYP	MAY	UNIT
	l arge-signal differential			25°C		250	400	600	400	440	:	VIN
AVD	voltage amplification	-	$VOPP = 3 V$ , $H_L = 2 KH$	0°C to 70°C	-	250		600	400		-1	
BW	Bandwidth (-3 dB)	2	VOPP = 1 V	25°C	1		50			50		MHz
			5	25°C			0.4	2		0.4	2	V
0	Input offset current		VIC = 0	0°C to 70°C	1 Of 2			9			9	4
				25 °C			6	30		10	30	Δ
(IB	Input bias current		VIC = 0	0°C to 70°C	1 Of 2			40			40	C.
	Common-mode input			25 °C		+1			н Т			>
VICR	voltage range	m		0°C to 70°C	7 10 1	±1			- H			
Voc	Common-mode output	-	RL = ∞	25 °C	2	2.4	2.9	3.4	2.4	2.9	3.4	V
	oBouot			25°C			0.35	0.75		0.35	0.75	N
V00	Output offset voltage	-	$V_{ID} = 0$ , $R_{L} = \infty$	0°C to 70°C	7			15			1.5	>
	Peak-to-neak output			25°C		9	4		3	4		N
VOPP	voltage swing	-	$R_L = 2 k\Omega$	0°C to 70°C	-	2.8			2.8			
	6		Vnn = 1 V,	25°C			4			3.6		02
zi	Input impedance		f = 1 kHz to 10 MHz	0°C to 70°C	-		3.6			33		
			f = 10C - 4z			60	86		60	86		
	Common-mode		f = 5 N	2,62			60			60		an an
CMRR	rejection ratio	m	$VIC = \pm 1 V  f = 100 \text{ kHz}$	000E . 000		50			50			}
			f = 5 MHz	7-0/ 01 7-0			60			60		
	Supply voltage rejection		$\Delta V_{CC} + = \pm 0.5 V,$	25°C		50	70		50	02		Bb
ksvr	ratio (ΔVCC/ΔVIO)	4	$\Delta V_{CC} = \pm 0.5 V$	0°C to 70°C	-	50			50			
~ ~	Broadband equivalent	4	BW = 1 kHz to 10 MHz	25 °C	1 or 2		12			12		μ٧
	Pronanation delay time	6	AVA = 1 V	25°C	2		7.5			7.5		лs
pd,			AVA = 1 V	25°C	2		10.5			105		ns
Lr		-										
lsink(max)	Maximum output sink current				1, 2, or 3	m	4		m	4		Am
				25°C			18	24		19	24	Δm
CC CC	Supply current		No load, No signal	0°C to 70°C	1 01 2			27			27	

Special Functions

[†]The gain option is selected as follows: Gain Option 1 . . . Gain adjust pin A is connected to pin B. Gain Option 2 . . . Gain adjust pins A and B are open.

# TL592, TL592A DIFFERENTIAL VIDEO AMPLIFIERS

# TL592, TL592A DIFFERENTIAL VIDEO AMPLIFIERS



**4** Special Functions



# TL592B DIFFERENTIAL VIDEO AMPLIFIER

D2668, JUNE 1985-REVISED APRIL 1988

- Adjustable Gain to 400 Typ
- No Frequency Compensation Required
- Low Noise . . . 3 μV Typ Vn

#### description

This device is a moi...lithic two-stage video amplifier with differential inputs and differential outputs. It features internal series-shunt feedback that provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads. All stages are currentsource biased to obtain high common-mode and supply-voltage rejection ratios.

The differential gain is typically 400 when the gain adjust pins are connected together, or amplification may be adjusted from near 0 to 400 by the use of a single external resistor connected between the gain adjustment pins A and B. No external frequency-compensating components are required for any gain option.

The device is particularly useful in magnetic-tape or disk-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include generalpurpose video and pulse amplifiers.

The device achieves low equivalent noise voltage through special processing and a new circuit layout incorporating input transistors with low base resistance.

The TL592B is characterized for operation from 0 °C to 70 °C.





[†]D8 and D14 are the codes used to differentiate the 8-pin and 14-pin versions, respectively.

#### symbol



Special Functions

4

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



### TL592B DIFFERENTIAL VIDEO AMPLIFIER

schematic



absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, VCC+(see Note 1)	8 V
Supply voltage, VCC	8 V
Differential input voltage	±5 V
Voltage range, any input	VCC+ to VCC-
Output current	10 mA
Continuous total power dissipation See Dissip	ation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values except differential input voltages are with respect to the midpoint between V_{CC+} and V_{CC-}.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	T _A = 70°C POWER RATING
D8	mW	5.8 mW/°C	59 °C	464 mW
D14	530 mW	N/A	N/A	530 mW
Ν	530 mW	N/A	N/A	530 mW
Р	530 mW	N/A	N/A	530 mW

DISSIPATION RATING TABLE

#### recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	J	U	8	V.
Supply voltage, V _{CC}	-3	-6	-8	v
Operating free-air temperature, TA	0		70	°C



# electrical characteristics at specified free-air temperature, VCC + = 6 V, VCC - = -6 V, RL = 2 k $\Omega$ (unless otherwise noted)

PA	RAMETER	TEST FIGURE	TEST	CONDITIONS [†]		MIN	түр	MAX	UNIT	
A	Large-signal differential		VOPP = 3 V,	$R_L = 2 k\Omega$ ,	25 °C	300	400	500	MAL	
AVD	voltage amplification		RAB = 0		0°C to 70°C			600	V/V	
AVD2	Large-signal differential voltage amplification	1	V _{OPP} = 3 V, R _{AB} = 1 kΩ	$R_L = 2 k\Omega,$	25°C		13		V/V	
BW	Bandwidth (-3 dB)	2	VOPP = 1 V,	RAB = 0	25°C		50		· • • •	
14.5	have all and an and a				25°C		0.4	5		
'IO	input offset current		in the second second		0°C to 70°C			6	μд	
	Line Mar annual				25°C		9	30		
IB	input bias current				0°C to 70°C	and the second		40	μΑ	
	Common-mode input		1		-: C	±1				
VICR	voltage range	3			0°C to 70°C	±1			v	
Voc	Common-mode output	1	RL = ∞		25 °C	2.4	2.9	3.4	v	
1.2.2					25°C	5.25	0.35	0.75		
V00	Output offset voltage	1	1 $V_{ID} = 0, R_{AB} = \infty, R_{L} = \infty$		0' - :- 70°C			1.5	v	
	Peak-to-peak output				25°C	3	4			
VOPP	voltage swing	1	$R_L = 2 k\Omega$	$R_{AB} = 0$	0°C to 70°C	2.8			V	
			$V_{OD} = 1 V_{c}$	$R_{AB} = 0$	25 °C		4			
ri	Input resistance				0°C to 70°C		3.6		kΩ	
ro	Output resistance	17 7.00	· · · · · · · · · · · · · · · · · · ·	and the second se	0°C to 70°C			30	Ω	
Ci	Input capacitance		12.95	- Sec. 2	25°C	C	5		pF	
				f = 100 kHz	0500	60	86			
	Common-mode		$V_{1C} = \pm 1 V$	f = 5 MHz	25°C		60			
CMRR	rejection ratio	3	$R_{AB} = 0$	f = 100 kHz		50			dB	
				f = 5 MHz	0°C to 70°C		60			
1. S. A.	Supply voltage rejection		$\Delta V_{\rm CC} + = \pm 0.5$	5 V,	25°C	50	70			
KSVR	ratio (ΔVCC/ΔVIO)	4	$\Delta V_{\rm CC} - = \pm 0.9$	5 V, RAB = 0	0°C to 70°C	50	5.000			
Vn	Broadband equivalent input noise voltage	4	BW = 1 kHz to	10 MHz	25°C		3		μV	
t _{nd}	Propagation delay time	2	$\Delta V_0 = 1 V$		25°C		7.5		ns	
tr	Rise time	2	$\Delta V_0 = 1 V$	and the second sec	25°C	-	10.5	100	ns	
l _{sink(max)}	Maximum output sink current		V _{ID} = 1 V,	V ₀ = 3 V		3	4		mA	
					25°C		18	24		
1CC	Supply current		No load,	No signal	0°C to 70°C			27	1 mA	

[†]R_{AB} is the gain-adjustment resistor connected between gain-adjust pins A and B. If not specified for a particular parameter, its value is irrelevant to that parameter.



# TL592B DIFFERENTIAL VIDEO AMPLIFIER





# TL851 SONAR BANGING CONTROL

**MARCH 1988** D2760

- Designed for Use with the TL852 in Sonar **Ranging Modules Like the SN28827**
- **Operates with Single Supply**
- Accurate Clock Output for External Use
- Synchronous 4-Bit Gain Control Output
- Internal 1.2-V Level Detector for Receive
- **TTL-Compatible**
- Interfaces to Electrostatic or Piezoelectric Transducers

#### description

The TL851 is an economical digital I²L ranging control integrated circuit designed for use with the Texas Instruments TL852 Sonar ranging receiver integrated circuit.

The TL851 is designed for distance measurement from six inches to 35 feet. The device has an internal oscillator that uses a low-cost external ceramic resonator. With a simple interface and a 420-kHz ceramic resonator, the device will drive a 50-kHz electrostatic transducer.

The device cycle begins when Initiate (INIT) is taken to the high logic level. There must be at least 5 ms from initial power up (VCC) to the first initiate signal in order for all the device internal latches to reset and for the ceramic-resonator-controlled oscillator to stabilize. The device will transmit a burst of 16 pulses each time INIT is taken high.

The oscillator output (OSC) is enabled by INIT. The oscillator frequency is the ceramic resonator frequency divided by 8.5 for the first 16 cycles (during transmit) and then the oscillator frequency changes to the ceramic resonator frequency divided by 4.5 for the remainder of the device cycle.

When used with an external 420 kilohertz ceramic resonator, the device internal blanking disables the receive input (REC) for 3.8 ms after initiate to exclude false receive inputs that may be caused by transducer ringing. The internal blanking feature also eliminates echos from objects closer than 1.3 feet from the transducer. If it is necessary to detect objects closer than 1.3 feet, then the internal blanking may be shortened by taking the blanking inhibit (BINH) high, enabling the receive input. The blanking input (BLNK) may be used to disable the receive input and reset ECHO to a low logic level at any time during the device cycle for selective echo exclusion or for a multiple-echo mode of operation.

The device provides a synchronous 4-bit gain control output (12 steps) designed to control the gain of the TL852 sonar ranging receiver integrated circuit. The digital gain control waveforms are shown in Figure 2 with the nominal transition times from INIT listed in the Gain Control Output Table.

The threshold of the internal receive level detector is 1.2 volts. The TL851 operates over a supply voltage range of 4.5 volts to 6.8 volts and is characterized for operation from 0°C to 40°C.

4
S
2
0
12
5
ē
- 5
11
-
-
0
Ü
ā
ă
S

D2760, SEPTEN	MBER 1983-REVISED
N DUAL-IN-LI	INE PACKAGE
(TOP	VIEW)
VCC 1	16 BLNK
XMIT 2	15 BINH
GND 3	14 INIT
GCD 4	13 FILT
GCA 5	12 XTAL2
GCB 6	11 XTAL1
GCC 7	10 OSC
REC 8	9 ECHO



# TL851 Sonar Ranging Control

STEP					
NUMBER	GCD	GCC	GCB	GCA	TIME (ms) FROM INITIATE †1
0	L	L	L	L	2.38 ms
1	L	L	L	н	5.12 ms
2	L	L	L	L	7.87 ms
3	L	L	н	н	10.61 ms
4	L	н	L	L	13.35 ms
5	L	н	L	н	16.09 ms
6	L	н	н	L	18.84 ms
7	L	н	н	н	21.58 ms
8	н	L	L	L	27 07 ms
9	н	L	L	н	32.55 ms
10	н	L	н	L	38.04 ms
11	н	L	н	н	INIT I

GAIN CONTROL OUTPUT TABLE

[†] This is the time to the end of the indicated step and assumes a nominal 420-kHz ceramic resonator.

#### functional block diagram





**Special Functions** 

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage at any pin with respect to GND	-0.5 V to 7 V
Voltage at any pin with respect to VCC	-7 V to 0.5 V
Continuous power dissipation at (or below) 25 °C free-air temperature (see Note 1)	1150 mW
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25 °C, derate linearly at the rate of 9.2 mW/°C.

#### recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, VCC			4.5	6.8	V
High-level input voltage, VIH	BLNK,	INIT	2.1		V
Low-level input voltage, VII	BLNK, State	INIT		0.6	v
Delay time, power up to .*! I high			5		ms
Operating free-air temperature, TA			0	40	°C

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER		TEST CONDITIONS	MIN TYPT MAX	UNIT
Input current		BLNK, BINH, INIT	VI = 2.1 V	1	mA
High-level output curr	ent, IOH	ECHO, OSC, GCA, •	V _{OH} = 5.5 V	100	μΑ
Low-level output volta	age, VOL	· ··· OSC, GCA,	I _{OL} = 1.6 mA	0.4	v
On-state output current		output	V ₀ = 1 V	- 140	mA
Internal blanking inter	val	:// input		2 98 t	ms
	and the state of the	· ·· output		+3.4	1.11
Frequency during 16-	pulse transmit period	YMIT output		49.4 [‡]	кНz
		·· · output		93.3 [‡]	
Frequency after 16-pulse transmit period		AMI i output		0	KHZ
0	During transmit period	1		260	
Supply current, ICC	After transmit period		all a million of a	55	mA

 †  Typical values are at V_{CC} = 5 V and T_A = 25 °C.  ‡  These typical values apply for a 420-kHz ceramic resonator.



# TL851 SONAR RANGING CONTROL

#### schematics of inputs and outputs





INSTRUMENTS POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

# TL852 SONAR RANGING RECEIVER

D2779, SEPTEMBER 1983-REVISED MARCH 1988

- Designed for Use with the TL851 in Sonar Ranging Modules Like the SN28827
- Digitally Controlled Variable-Gain Variable-Bandwidth Amplifier
- Operational Frequency Range of 20 kHz to 90 kHz
- TTL-Compatible
- Operates from Power Sources of 4.5 V to 6.8 V
- Interfaces to Electrostatic or Piezoelectric
  Transducers
- Overall Gain Adjustable with One External Resistor

### description

The TL852 is an economical sonar ranging receiver integrated circuit for use with the TL851 control integrated circuit. A minimum of external components is required for operation, and this amplifier easily interfaces to Polaroid's 50-kilohertz electrostatic transducer. An external 68-kilohm  $\pm 5\%$  resistor from pin 8 (Bias) to pin 16 (GND) provides the internal biasing reference. Amplifier gain can be set with a resistor from pin 1 (G1IN) to pin 3 (GADJ). Required amplifier gain will vary for different applications. Using the detect-level measurement circuit of Figure 1, a nominal peak-to-peak value of 230 millivolts input during gain step 2 is recommended for most applications. For reliable operation, a level no lower than 50 millivolts should be used. The recommended detect level of 230 millivolts can be obtained for most amplifiers with an R1 value between 5 kilohms and 20 kilohms.

Digital control of amplifier gain is provided with gain control inputs on pins 12 through 15. These inputs must be driven synchronously (all inputs stable within 0.1 microsecond) to avoid false receive output signals due to invalid logic counts. This can be done easily with the TL851 control IC. A plot showing relative gain for the various gain steps versus time can be seen in Figure 2. To dampen ringing of the 50-kilohertz electrostatic transducer, a 5-kilohm resistor from pin 1 (GAIN) to pin 2 (XIN) is recommended.

An external parallel combination of inductance and capacitance between pin 4 (LC) and pin 5 (V_{CC}) provides an amplifier with an externally controlled gain and Q. This not only allows control of gain to compensate for attenuation of signal with distance, but also maximizes noise and sidelobe rejection. Care must be taken to accurately tune the L-C combination at operating frequency or gain and Q will be greatly reduced at higher gain steps.

AC coupling between stages of the amplifier is accomplished with a 0.01-microfarad capacitor for proper biasing.

The receive output is normally held at a low level by an internal 1-microampere current source. When an input of sufficient amplitude is received, the output is driven alternately by the 1-microampere discharge current and a 50-microampere charging current. A 1000-picofarad capacitor is required from the receive output (pin 9) to ground (pin 16) to integrate the received signal so that one or two noise pulses will not be recognized.

Pin 2 (XIN) provides clamping for the transformer secondary when used for transducer transmit drive as shown in Figure 4 of the SN28827 data sheet.

The TL852 is characterized for operation from 0°C to 40°C

N DUAL	-IN	-LINE P	ACKAGE
GIIN	T	U16	GND
XIN	2	15	GCD
GADJ	3	14	GCA
LC	4	13	GCB
VccE	5	12	GCC
GIOUT	6	11	NC
G2IN	7	10	DNC
BIAS	8	9	REC

NC-No internal connection

# TL852 Sonar Ranging Receiver

functional block diagram





#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage at any pin with respect to GND	-0.5 V to 7 V
Voltage at any pin with respect to VCC	-7 V to 0.5 V
XIN input current (50% duty cycle)	±60 mA
Continuous power dissipation at (or below) 25 °C free-air temperature (see Note 1)	1150 mW
Operating free-air temperature range	-40°C to 85°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25 °C, derate linearly at the rate of 9.2 mW/°C.

#### recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, VCC		4.5	6.8	V
High-level input voltage, VIH	CCA CCB CCC CCD	2.1		V
Low-level input voltage, VIL	GCA, GCB, GCC, GCD		0.6	V
Bias resistor between pins 8 an	d 16	64	72	kΩ
Operating free-air temperature,	TA	0	40	°C

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	TEST CONDI	TIONS	MIN TYPT	MAX	UNIT
Innut clamp voltage at XIN	$l_1 = 40 \text{ mA}$			2.5	v
input clamp voltage at Ally	$l_1 = -40 \text{ mA}$			-1.5	v
Open-circuit input voltage at GCA, GCB, GCC, GCD	$V_{CC} = 5 V,$	l _l = 0	2.5		v
High-level input current, I _{IH} , into GCA, GCB, GCC, GCD	$V_{CC} = 5 V,$	$V_{IH} = 2 V$	-0.5		mA
Low-level input current, IIL, into GCA, GCB, GCC, GCD	$V_{CC} = 5 V,$	V _{IL} = 0		- 3	mA
Presive extent evenent	$I_{G2IN} = -100 \ \mu A$ ,	$V_0 = 0.3 V$	1		
Receive output current	$I_{G2IN} = 100 \ \mu A$ ,	V ₀ = 0.1 V	- 50		μΑ
Supply current, ICC				45	mA

[†]Typical values are at V_{CC} = 5 V and T_A = 25 °C.



## TL852 Sonar Ranging Receiver

### TYPICAL APPLICATION INFORMATION

#### detect level vs gain step

Detect level is measured by applying a 15-cycle burst of 49.4 kilohertz square wave just after the beginning of the gain step to be tested. The least burst amplitude that makes the REC pin reach the trip level is defined to be the detect level. System gain is then inversely proportional to detect level. See the test circuit in Figure 1.





#### TYPICAL APPLICATION INFORMATION









# TL853 Sonar Ranging Control

D2843, DECEMBER 1984-REVISED MARCH 1988

•	Designed for Use with the TL852 in Sonar Ranging Modules Like the SN28828	N DUAL-IN-LINE PACKAGE (TOP VIEW)
•	Operates with Single Supply	
•	Accurate Clock Output for External Use	
•	Synchronous 4-Bit Gain Control Output	
•	Internal 1.2-V Level Detector for Receive	
•	TTL-Compatible	
	handers and AO LUIS Discontinues	

 Interface to 40-kHz Piezoelectric or Electrostatic Transducers

#### description

The TL853 is an economical digital I²L ranging control integrated circuit designed for use with the Texas Instruments TL852 Sonar ranging receiver integrated circuit.

The TL853 is designed for distance measurement ranging from six inches to 35 feet. The device has an internal oscillator that uses a low-cost external ceramic resonator. With a simple interface and a 420-kHz ceramic resonator, the device will drive a 40-kHz piezoelectric transducer.

The device cycle begins when Initiate (INIT) is taken to the high logic level. There must be at least 5 ms from initial power up (V_{CC}) to the first initiate signal in order for all the device internal latches to reset and for the ceramic-resonator-controlled oscillator to stabilize. The device will transmit a burst of 16 pulses each time INIT is taken high.

The oscillator output (OSC) is enabled by INIT. The oscillator frequency is the ceramic resonator frequency divided by 10.5 for the first 16 cycles (during transmit) and then the oscillator frequency changes to the ceramic resonator frequency divided by 4.5 for the remainder of the device cycle.

When used with an external 420-kilohertz ceramic resonator, the device internal blanking disables the receive input (REC) for 2.46 ms after initiate to exclude false receive inputs that may be caused by transducer ringing. The internal blanking feature also eliminates echos from objects closer than 1.37 feet from the transducer. If it is necessary to detect objects closer than 1.37 feet, then the internal blanking may be shortened by taking the blanking inhibit (BINH) high, enabling the receive input. The blanking input (BLNK) may be used to disable the receive input and reset ECHO to a low logic level at any time during the device cycle for selective echo exclusion or for a multiple-echo mode of operation.

The device provides a synchronous 4-bit gain control output (12 steps) designed to control the gain of the TL852 sonar ranging receiver integrated circuit. The digital gain control waveforms are shown in Figure 2 with the nominal transition times from INIT listed in the Gain Control Output Table.

The threshold of the internal receive level detector is 1.2 volts. The TL853 operates over a supply voltage range of 4.5 volts to 6.8 volts and is characterized for operation from  $0^{\circ}$ C to  $40^{\circ}$ C.



# TL853 Sonar Ranging Control

GAIN CONTROL OUTPUT TABLE								
STEP CGD GCC GCB GCA TIME (ms) FROM INITIA								
0	L	L	L	L	2.46 ms			
1	L	L	L	н	5.2 ms			
2	L	L	н	L	7.94 ms			
3	L	L	н	н	10.69 ms			
4	L	н	L	L	13.43 ms			
5	L	н	L	Н	16.17 ms			
6	L	н	н	L	18.91 ms			
7	L	н	н	н	21.66 ms			
8	н	L	L	L	27.14 ms			
9	н	L	L	н	32.63 ms			
10	н	L	н	L	38.11 ms			
11	н	L	н	н	INIT +			

[†]This is the time to the end of the indicated step and assumes a nominal 420-kHz ceramic resonator.

#### functional block diagram





Special Functions

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage at any pin with respect to GND	-0.5 V to 7 V
Voltage at any pin with respect to V _{CC}	-7 V to 0.5 V
Continuous power dissipation at (or below) 25 °C free-air temperature (see Note 1)	1150 mW
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25 °C, derate linearly at the rate of 9.2 mW/ °C.

#### recommended operating conditions

and the second second second second		MIN	MAX	UNIT
Supply voltage, VCC	all the second sec	4.5	6.8	V
High-level input voltage, VIH	BLNK, BINH, INIT	2.1		V
Low-level input voltage, Vu	BLNK, BINH, INIT		0.6	V
Delay time, power up to ". high		5		ms
Operating free-air temperature, TA		0	40	°C

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER		TEST CONDITIONS	MIN TYP [†] MAX	UNIT	
Input current	and a survey and	is the state INIT	V _I = 2.1 V	1	mA	
High-level output curre	int, IOH	GCB, GCA,	V _{OH} = 5.5 mA	100	μA	
Low-level output volta	ge, V _{OL}	ECHO, GCA, 3CC, GCD	$I_{OL} = 1.6 \text{ mA}$	0.4	v	
On-state output curren	t	• • • output	V ₀ = 1 V	- 140	mA	
Internal blanking interv	al	F. input		2.46 [‡]	ms	
		: • ·. output		40 [‡]		
Frequency during 16-p	uise transmit period	· output		40 [‡]	KHZ	
		OSC output		93.3 [‡]	1	
Frequency after 16-pulse transmit period		XMIT output		0	kHz	
	During transmit perio	bd		260		
Supply current, ICC	After transmit period	t i i i i i i i i i i i i i i i i i i i		55	mA	

 †  Typical values are at V_{CC} = 5 V and T_A = 25 °C.  ‡  These typical values apply for a 420-kHz ceramic resonator.



# TL853 Sonar Ranging Control

#### schematics of inputs and outputs



Special Functions

# TL3013C SILICON HALL-EFFECT SWITCH

D2903, SEPTEMBER 1985-REVISED APRIL 1988

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Standard Bipolar Technology Minimizes ESD Susceptibility
- IOL . . . 20 mA Min at VOL = 0.4 V
- IOH ... 1 μA Max at VOH = 24 V
- Buried Hall-Effect Cell Reduces Threshold Drift Caused by Temperature Variation and Aging
- Direct Replacement for the Sprague UGN3013

#### description

The TL3013C is a low-cost magnetically operated electronic switch that utilizes the Hall effect to sense magnetic fields. Each circuit consists of a Hall-effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL3013C is characterized for operation over the temperature range of 0°C to 70°C.

#### functional block diagram



FUNCTION TABLE (0 °C  $\leq$  T_A  $\leq$  70 °C)

FLUX DENSITY	OUTPUT
B ≤ 2.5 mT (25 G)	Off
2.5 mT (25 G) < B < 45 mT (450 G)	Undefined
B ≥ 45 mT (450 G)	On

The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.



**Special Functions** 

## TL3013C SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	40 V
Output voltage	40 V
Output current	) mA
Magnetic flux density unlin	nited
Operating free-air temperature range 0°C to 7	0°C
Storage temperature range	50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 26	30°C

NOTE 1. Voltage values are with respect to the network ground terminal.

electrical characteristics over operating free-air temperature range,  $V_{CC} = 4.5 V$  to 24 V (unless otherwise noted)

	PARAMITER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BOP	Operate-point magnetic flux density (see Figure 2)			30	45	mT [†]
BRP	Release-point magnetic flux density (see Figure 2)		2.5	22.5		mTt
Bhys	Hysteresis (BOP - BRP)		3	7.5		mT [†]
αB	Temperature coefficient of BOP and BRP			±0.25		%/°C
VOL	Low-level output voltage	$I_{OL} = 20 \text{ mA}$			0.4	V
IOH	High-level output current	V _{OH} = 24 V			1	μA
ICC	Supply current			3	7	mA

[†]The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.



FIGURE 1. DEVICE ORIENTATION IN A MAGNETIC FIELD



FIGURE 2. REPRESENTATIVE CURVE OF VO vs B

switching characteristics at V_{CC} = 12 V,  $T_A = 25 \,^{\circ}C$  (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
tr	Output rise time	D = 820.0 C = 20 pF	3	50	
tf	Output fall time	$m_{L} = 620 u, C_{L} = 20 pF$		85	IIS

INSTRI MENTS POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

# TL3019C SILICON HALL-EFFECT SWITCH

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Standard Bipolar Technology Minimizes ESD Susceptibility
- IOL . . . 20 mA Min at VOL = 0.4 V
- IOH . . . 1 μA Max at VOH = 24 V
- Buried Hall-Effect Cell Reduces Threshold Drift Caused by Temperature Variation and Aging
- Direct Replacement for the Sprague UGN3019

#### description

The TL3019C is a low-cost magnetically operated electronic switch that utilizes the Hall Effect to sense magnetic fields. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL3019C is characterized for operation over the temperature range of 0°C to 70°C.

#### functional block diagram

D2903, JULY 1985-REVISED



FUNCTION TABLE (0 °C  $\leq$  T_A  $\leq$  70 °C)

FLUX DENSITY OUT			
$B \le 12.5 \text{ mT} (125 \text{ G})$	Off		
12.5 mT (125 G) < B < 50 mT (500 G)	Undefined		
B ≥ 50 mT (500 G)	On		

The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.



## TL3019C SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 40 V
Output voltage
Output current
Magnetic flux density unlimited
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

NOTE 1. Voltage values are with respect to the network ground terminal.

electrical characteristics over operating free-air temperature range,  $V_{CC} = 4.5 V$  to 24 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX		Tean	
BOP	Operate-point magnetic nux density (see Figure 2)			42	50	mir
BRP	Release-point magnetic flux density (see Figure 2)		12.5	30		mT [†]
Bhys	Hysteresis (BOP-BRP)		5	12		mT [†]
αB	Temperature coefficient of BOP and BRP			±0.25		%/°C
VOL	Low-level output voltage	$I_{OL} = 20 \text{ mA}$			0.4	V
ЮН	High-level output current	V _{OH} = 24 V			1	μA
JCC	Supply current		1.0	3	7	mA

[†]The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.

Vo

MIN



 $0 \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 12.5 \text{ mT} \end{array} \begin{array}{c} B_{RP} \\ B_{RP} \\ B_{RP} \\ B_{O} \\ B_{$ 

MAX

FIGURE 1. DEVICE ORIENTATION IN A MAGNETIC FIELD

FIGURE 2. REPRESENTATIVE CURVE OF VO vs B

switching characteristics at V_{CC} = 12 V, T_A =  $25 \,^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX		MAX	UNIT
tr	Output rise time	B 920.0 C 20 pE	350			
tf	Output fall time	$R_{L} = 820  u,  C_{L} = 20  pF$		85	-	ns



# TL3020C SILICON HALL-EFFECT SWITCH

D2903, OCTOBER 1985-REVISED APRIL 1988

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Standard Bipolar Technology Minimizes ESD Susceptibility
- IOL . . . 20 mA Min at VOL = 0.4 V
- IOH . . . 1 μA Max at VOH = 24 V
- Buried Hall-Effect Cell Reduces Threshold Drift Caused by Temperature Variation and Aging
- Direct Replacement for the Sprague
  UGN3020

#### description

The TL3020C is a low-cost magnetically operated electronic switch that utilizes the Hall effect to sense magnetic fields. Each circuit consists of a Hall-effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL3020C is characterized for operation over the temperature range of 0°C to 70°C.

#### functional block diagram



FUNCTION TABLE (0 °C  $\leq$  T_A  $\leq$  70 °C)

FLUX DENSITY	OUTPUT
B ≤ 5 mT (50 G)	Off
5 mT (50 G) < B < 35 mT (350 G)	Undefined
B ≥ 35 mT (350 G)	On

The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.



 **Special Functions** 

# TL3020C SILICON HALL-EFFECT SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	40 V
Output voltage	40 V
Output current	30 mA
Magnetic flux density	unlimited
Operating free-air temperature range 0°	C to 70°C
Storage temperature range	to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1. Voltage values are with respect to the network ground terminal.

electrical characteristics over operating free-air temperature range,  $V_{CC} = 4.5 V$  to 24 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BOP	Operate-point magnetic flux density (see Figure 2)			22	35	mT†
BRP	Release-point magnetic flux density (see Figure 2)		5	16.5		mT [†]
Bhys	Hysteresis (BOP-BRP)		2	5.5		mT†
αB	Temperature coefficient of BOP and BRP			±0.25		%/°C
VOL	Low-level output voltage	I _{OL} = 20 mA			0.4	v
юн	High-level output current	V _{OH} = 24 V			1	μA
ICC	ապարիy current			3	7	mA

[†]The unit of magnetic density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss (G) by multiplying by ten.



FIGURE 1. DEVICE ORIENTATION IN A MAGNETIC FIELD



FIGURE 2. REPRESENTATIVE CURVE OF VO vs B

# switching characteristics at V_{CC} = 12 V, $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS MIN TYP		MAX	UNIT	
tr	Output rise time	$B_{1} = 820.0 C_{2} = 20.5E_{2}$				
tf	Output fall time			55		115



### TL31011, TL3101C SILICON HALL-EFFECT SWITCH

APRIL 1985-REVISED APRIL 1988

- Magnetic-Field Sensing Hall-Effect Input
- On-Off Hysteresis
- Small Size
- Solid-State Technology
- Open-Collector Output
- Buried Hall-Effect Cell Reduces Threshold Drift Caused By Temperature Variation and Aging

#### description

The TL3101I and TL3101C are low-cost magnetically operated electronic switches that utilize the Hall Effect to sense steady-state magnetic fields. Each circuit consists of a Hall-Effect sensor, signal conditioning and hysteresis functions, and an output transistor integrated into a monolithic chip. The outputs of these circuits can be directly connected to many different types of electronic components.

The TL3101C is characterized for operation over the temperature range of 0°C to 70°C. The TL3101I is characterized for operation over the range of -20°C to 85°C.

FUNCTION TABLE 0 °C  $\geq$  T_A  $\leq$  70 °C

FLUX DENSITY	OUTPUT
≤ -25 mT	Off
-25  mT < B < 25  mT	Undefined
≥ 25 mT	On

#### functional block diagram



PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the 'rer's of Texas Instruments standard warrenty. Pr. 1.-1: in processing does not necessarily include tes' it. if all persmeters.





4-171

# TL3101I, TL3101C SILICON HALL-EFFECT SWITCH

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	. 7 V
Output voltage	30 V
Output current	20 mA
Operating free-air temperature range: TL3101C	70°C
TL3101I	85°C
Storage temperature range	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Magnetic flux density un	limited

NOTE 1: Voltage values are with respect to network ground terminal.

#### electrical characteristics at specified free-air temperature, VCC = 5 V ± 5% (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
D	Threshold of positive going			0°C to 70°C	0		25	
в <b>т</b> +	magnetic flux density [†]			- 20 °C to #1 3	0		35	m13
	Threshold of negative going			0°C to 70°C	- 25‡		0	mT∮
<del>р</del> Т –	magnetic flux density [†]	1		- 20°C to 85°C	- 35‡		0	
BT+ - BT-	Hysteresis			0°C to 70°C	5	20		mT‡
юн	High-level output current	VOH = 20 V		0°C to 70°C			100	μA
VOL	Low-level output voltage	Vcc = 4.75, 10	L = 16 mA	0°C to 70°C			0.4	V
1	Supely surrent	Ver - E 2E V	Output low	0.00 +0 70.00			6	mA
icc	Supply current	VCC - 0.25 V	Output high	000000	F		4	

[†]Threshold values are those levels of magnetic flux density at which the output changes state. For the TL3101, a level more positive than  $B_{T+}$  causes the output to a low level and a level more negative than  $B_{T+}$  causes the output to go to a high level. See Figures 1 and 2. [‡]The algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for flux density threshold levels only.

[§]The unit of magnetic flux density in the International System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten.



The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the north-seeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

#### FIGURE 1. DEFINITION OF MAGNETIC FLUX POLARITY



The positive-going threshold ( $B_{T+}$ ) is a positive B level at which a positive-going flux density results in the TL3101 output turning on. The negative-going threshold is negative B level at which a negative-going flux density results in the TL3101 turning off.

#### FIGURE 2. REPRESENTATIVE CURVES OF VO vs B



## TL3103I, TL3103C LINEAR HALL-EFFECT SENSORS

D3184, MAY 1985-REVISED FEBRUARY 1989

- Output Voltage Linear with Applied Magnetic Field
- Sensitivity Stable Over Wide Operating Temperature Range
- Buried Hall Cell Reduces Changes Due to Temperature Variation and Aging
- Solid-State Technology
- Three-Terminal Device
- Senses Static or Dynamic Magnetic Fields

#### description

The TL3103I and TL3103C are low-cost magnetic-field sensors designed to provide a linear output voltage proportional to the magnetic field they sense. These monolithic circuits incorporate a Hall element as the primary sensor along with a voltage reference and a precision amplifier. Temperature stabilization and internal trimming circuitry yield a device that features high overall sensitivity accuracy with less then 5% error over its operating temperature range.

The TL3103I is characterized for operation from -20 °C to 85 °C. The TL3103C is characterized for operation from 0 °C to 70 °C.



#### functional block diagram



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2)	
Operating free-air temperature range: TL3103I – 20 °C to 85 °C	
TL3103C 0°C to 70°C	
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	
Magnetic flux density unlimited	

NOTES: 1. Voltage values are with respect to network ground terminal. 2. For operation above 25°C free-air temperature, derate linearly at the rate of 6.2 mW/°C.

PRODUCTION OATA documents contain information c.rr+1.-s of publication dets. Products conform to s.r+1.-dicos per the ferms of Texas Instruments stancarc warranty. Production processing does not necessarily include testing of all parameters.



### TL3103I, TL3103C LINEAR HALL-EFFECT SENSORS

#### recommended operating conditions

		TL31031			TL3103C		LIAUT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNT
Supply voltage, VCC		9	12	15	9	12	15	V
Magnetic flux density, B				±50			+ 50	mT
Output current, IO	Sink			0.5		-	U.5	mA
	Source			- 2			-2	
Operating free-air temperature, TA		- 20		85	0		70	°C

# electrical characteristics over recommended ranges of supply voltage and magnetic flux density, $T_A = 25 \,^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
Vo	Output voltage	$l_0 = -2 \text{ mA to } 0.5 \text{ mA},$	5.8	6	6.2	V
ksvs	Supply voltage sensitivity (ΔVIO/ΔVCC)	B = 0 mT [§]	10.00	18		mV/V
S	Magnetic sensitivity (ΔVO/ΔB)	B = -50 to 50 mT ^{\$}	14	16	18	V/T [§]
ΔS	Magnetic sensitivity change with temperature	ΔTA = 25 C WIN or MAX			±5	%
1cc	Supply current	$B = 0 mT^{\frac{5}{2}}, I_0 = 0$		8	12	mA
fmax	Maximum operating frequency		1	100	-	kHz

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]Typical values are at V_{CC} = 12 V at T_A = 25 °C.

[§]The unit of magnetic flux density in the international System of Units (SI) is the tesla (T). The tesla is equal to one weber per square meter. Values expressed in milliteslas may be converted to gauss by multiplying by ten, e.g., 50 millitesla = 500 gauss.



The north pole of a magnet is the pole that is attracted by the geographical north pole. The north pole of a magnet repels the northseeking pole of a compass. By accepted magnetic convention, lines of flux emanate from the north pole of a magnet and enter the south pole.

#### FIGURE 1. DEFINITION OF MAGNETIC FLUX POLARITY







### TYPICAL APPLICATION DATA

The circuit in Figure 3 may be used to set the output voltage at zero field strength to exactly 6 V (using R1) and to set the sensitivity to exactly -15 V/T (using R2) as depicted in Figure 4.





# TL3103I, TL3103C LINEAR HALL-EFFECT SENSORS



#### **TYPICAL APPLICATION DATA**

#### linear hall-effect sensor in isolated feedback applications

#### purpose

The purpose of the circuit in Figure 9 is to demonstrate the capability of the linear hall-effect sensor to provide isolated sensing.



FIGURE 9. ISOLATE FEEDBACK



#### linear sensor

The TL3103 senses the presence of a magnetic field. In the absence of a magnetic field, the TL3103 output voltage is 6 V. As the sensor senses the presence of a magnetic field, its output varies proportionally at 16 V/T.

#### toroid

The permeability ( $\mu$ ) of any given material is the relationship of the magnetic flux density (B) to the magnetic field intensity (H). The magnetic field intensity of a toroid is given by the expression:

$$I = \frac{NI}{I}$$
(1)

Where: NI is number of turns times the current.

F

L is mean length of the toroid.

The expression for the magnetic flux density then becomes:

$$B = \mu \frac{N!}{L}$$
(2)

With an air gap, the basic expression is altered to the following:

$$B_{gap} = \mu_0 \frac{NI}{L + Kg} K$$
(3)

Where:  $\mu_0$  is the permeability of air =  $12.57 \times 10^{-7}$ .

K is the relative permeability of the toroid  $(\mu/\mu_0)$ .

g is the length of the air gap in mils.

If the relative permeability of the toroid is large (Kg > K), the mean length of the toroid becomes insignificant and the expression for flux density reduces to:

circuit

As previously discussed, the output of the TL3103 is:

$$V_{sense} = 6 V + (16 V/T) (\mu_0 \frac{NI}{g})$$

This shows how the output of the TL3103 varies with the ampere turns of the toroid. For some relative numbers, Figure 9 uses an Arnold toroid #A393163-2 with a 156-mil air gap. The magnetic field created in the air gap is:

B (gauss) = 1.92 NI (ampere turns)

Therefore, the variation in the output of the TL3103 is:

 $\Delta V_{sense} (mV) = (1.6) (1.92NI)$ 

The sensitivity of the TL3103 to the current in the windings can therefore be altered by the number of turns composing the windings.

<b>AV</b> sense	N	Δ1
614 mV	20	10 mA
614 mV	200	1 mA
614 mV	2000	100 µA



(5)

(6)

(7)

### TL3103I, TL3103C LINEAR HALL-EFFECT SENSORS

#### power supply application

Since the output of the TL3103 varies proportionally to the current flow in the toroid, this leads to the obvious application of current sensing. The features presented by this approach are as follows:

1. Minimum power loss in the sensing element:

 $P_{\text{loss}} = I_2 R_{\text{toroid}} \qquad (R < 0.01 \ \Omega \text{ for 20 turns}) \tag{8}$ 

2. Isolated feedback, no passive connection required.

Another application of this concept provides a linear isolated feedback of the output voltage. This is accomplished by connecting a resistor in series with the toroid terminated to ground. In this configuration, the current in the toroid is determined by the output voltage (IS =  $V_O/R_S$ ), therefore, the output variation of the TL3103 is proportional to the output voltage.



D2791, FEBRUARY 1984-REVISED MAY 1988

- Very Low Power Consumption . . . 1 mW Typ at VDD = 5 V
- Capable of Operation in Astable Mode
- CMOS Output Capable of Swinging Rail to Rail
- High Output-Current Capability
  - ... Sink 100 mA Typ
  - ... Source 10 mA Typ
- Output Fully Compatible with CMOS, TTL, and MOS
- Low Supply Current Reduces Spikes During Output Transitions
- High-Impedance Inputs . . . 10¹² Ω Typ
- Single-Supply Operation from 1 V to 18 V
- Functionally Interchangeable with the NE555; Has Same Pinout

#### description

The TLC551 is a monolithic timing circuit fabricated using TI's LinCMOS[™] process, which provides full compatibility with CMOS, TTL, and MOS logic and operation at frequencies up to 2 MHz. Accurate time delays and oscillations are possible with smaller, less-expensive timing capacitors than the NE555 because of the high input impedance. Power consumption is low across the full range of power supply voltages.

GND [1 8 VDD TRIG DSCH 2 7 THRES ουτΓ 3 6 RESET ۱۵ 5 CONT functional block diagram VDD RESET (8) CONTROL (4)

D OR P PACKAGE

(TOP VIEW)



Reset can override Trigger, which can override Threshold.

Like the NE555, the TLC551 has a trigger level approximately one-third of the supply voltage and a threshold level approximately two-thirds of the supply voltage. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is low, a low-impedance path is provided between the discharge terminal and ground.

While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC551 exhibits greatly reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling capacitors required by the NE555.

These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

All unused inputs should be tied to an appropriate logic level to prevent false triggering.

The TLC551C is characterized for operation from 0°C to 70°C.

LinCMOS is a trademark of Texas Instruments.



#### AVAILABLE OPTIONS

	V- MAAY	PACE AGE					PACE AGE		
TA	AT 25°C	SMALL-OUTI I'-I	PLASTIC DIP						
0°C to <b>70°C</b>	3.8 V	TLC551CD	TLC551CP						

D package is available taped-and-reeled. Add ''R'' suffix to device type when ordering (i.e. TLC551CDR).

RESET VOLTA-1E [†]	TRIGGER VOLTAGE [†]	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH		
	lrri . :	Irrelevant	Low	On		
>MAA	< 14 %	Irrelevant	High	Off		
>MAX	>MAX	>MAX	Low	On		
>MAX	>MAX	<min< td=""><td colspan="4">As previously established</td></min<>	As previously established			

[†]For conditions shown as MIN or MAX, use the appropriate value specified under electrical characteristics.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VDD (see Note 1)	18 V
Input voltage range (any input)	.3 V to VDD
Sink current, discharge or output	150 mA
Source current, output	15 mA
Continuous total dissipation at (or below) 25 °C free-air temperature	460 mW
Operating free-air temperature range C	°C to 70°C
Storage temperature range	'C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package	260°C

NOTE 1: All voltage values are with respect to network ground terminal.


#### electrical characteristics at specified free-air temperature, VDD = 1 V

PARAMETER	TEST CO	NDITIONS [†]	MIN	TYP	MAX	UNIT	
There is a list of the second second	I	25 °C	0.475	0.67	0.85		
i nresnolo voltage level		Full range	0.45		0.875	1 V	
Theoreman and a success to		25 °C		10		-	
nresnola current		MAX		75		PA	
		25°C	0.15	0.33	0.425		
Lugger vorrage iever		Full range	0.1		0.45	l v	
Trigger ourrent		25 °C		10		pА	
		MAX		75			
Reset voltage level		25°C	0.4	0.7	1	v	
		Full .3	0.3		1		
Reset current		2.	10				
		MAX		75			
Control voltage (open-circuit) as a percentage of supply voltage		MAX		66.7%			
	100 4	25 °C		0.02	0.15		
Discharge switch on-state voltage	IOL = 100 #A	Full · :+			0.2	1 ^v	
		2		0.1		- 0	
Discharge switch off-state current	1 F	MAX		0.5		1 nA	
	1	25 °C		0.03	0.2		
Low-level output voltage	$IOL = IOU \mu A$	Full range			0.25	1 °	
	10.0	25 °C	0.6	0.98		T	
nign-level output voitage	OH = -10 #A	Full range	0.6			] *	
Current and the second se		25 °C		15	100		
Supply current		Full range			150	μΑ	

[†]Full range (MIN to MAX) is 0°C to 70°C.

Special Functions A



## TLC551C LinCMOS™ TIMER

#### electrical characteristics at specified free-air temperature, VDD = 2 V

PARAMETER	TEST CO	TEST CONDITIONS [†]		MAX	UNIT	
The set of		25 °C	0.95 1.33	1.65		
i nreshold voltage level		Full range	0.85	1.75	1 °	
These hald as a second		25 °C	10			
Infestiola current		MAX	75		] PA	
Trigger voltage level		25 °C	0.4 0.67	0.95	N/	
		Full range	0.3	1.05	1 °	
Triagor ourropt		25°C	10			
		MAX	75		PA	
Reset voltage level		25 °C	0.4 1.1	1.5	v	
		Full · · ·	0.3	1.8		
Reset current		2	10		-	
		MAX	75		PA	
Control voltage (open-circuit) as a percentage of supply voltage		MAX	66.7%			
Bischard and the state state		25°C	0.03	0.2		
Discharge switch on-state voltage		Full • • •		0.25	1 Y	
Discharge quitch off state summer		2	0.1			
Discharge switch off-state current	The second se	MAX 0.5				
	1	25 °C	0.07	0.3		
Low-level output voltage		Full range		0.35	1 °	
High level output veltage	300	25 °C	1.5 1.9	1.000		
rigii-ievei output voltage	OH = -300 #A	Full range	1.5		1 °	
Sumply summer		25 °C	65	- :		
Supply current		Full range		400	μA	



PARAMETER	TEST CO	TEST CONDITIONS [†]		ТҮР	MAX	UNIT	
	1	25 °C	2.8	3.3	3.8		
Threshold voltage level		Full range	2.7		3.9	1 ^v	
		25°C		10		<u> </u>	
Threshold current				75		pΑ	
		•	1.36	1.66	1.96		
Trigger voltage level		Full range	1.26		2.06		
		25 °C		10			
rigger current		MAX		75			
Reast walte as lower		25 °C	0.4	1.1	1.5	V	
Reset voltage level		Full range	0.3		1.8		
Breat		25 °C		10			
Reset current	I F	MAX	75				
Control voltage (open-circuit) as a		MAX	6	6.7%			
percentage of supply voltage							
Discharge switch on-state voltage	$I_{OI} = 10 \text{ mA}$	25 °C		0.14	0.5	4 v	
	- OE	Full range			0.6		
Discharge switch off-state current		25 °C		0.1		nA	
		MAX		0.5			
	loi = 8 mA	25 °C		0.21	0.4		
	.OL	Full range			0.5		
Low-level output voltage	$I_{OI} = 5 \text{ mA}$	25 °C		0.13	0.3	v	
		Full range			0.4		
	a  = 3.2  m	25 °C		0.08	0.3		
	10L - 0.2 IIIA	Full range			0.35		
High loval output valtage	$law = -1 m \Lambda$	25°C	4.1	4.8		V	
High-level output voltage	I I I I I I I I I I I I I I I I I I I	Full range	4.1			v	
Supply ourroat		25 °C		170	350		
Supply current	Ι Γ	Full range			500	] #^	

#### electrical characteristics at specified free-air temperature, VDD = 5 V



## TLC551C LinCMOS™ TIMER

## electrical characteristics at specified free-air temperature, VDD = 15 V

PARAMETER	TEST CO	NDITIONS [†]	MIN TYP	MAX	UNIT	
<b>T 1 1 1 1 1 1 1 1 1 1</b>		25 °C	9.45 10	10.55		
Inreshold voltage level		Full range	9.35	10.65	v	
Three hald average		25 °C	10			
infestiola current		MAX	75		рА	
Trianan weltenen tevel		25 °C	4.65 5	5.35		
ingger voltage level		Full range	4.55	5.45	v	
Trigger outpart		25 °C	10			
Thgger current		22.5	75		рА	
Peest veltage level		20 0	0.4 1.1	1.5		
neset voitage level		Full range	0.3	1.8	v	
Reset current		25 °C	10			
		MAX	75		рА	
Control voltage (open-circuit) as a percentage of supply voltage		MAX	66.7%			
Discharge switch on-state voltage		25 °C	0.77	1.7		
	IOL = 100 mA	Full range		1.8	v	
		25 °C	0.1		-	
Discharge switch off-state current		MAX	0.5		nA	
	100 - 1	25 °C	1.28	3.2	2 6 1	
		Full a		3.6		
Low lovel entruit veltage		2.	0.63	1		
cow-level output voltage	IOL = 50 MA	Full 3		1.3	v	
	10 - 10 - 10	2.	0.12	0.3	1	
		Full range		0.4		
	10 - 10 - 10	25 °C	12.5 14.2			
	10H = - 10 HA	Full range	12.5			
High-level output voltage		25 °C	13.5 14.6			
	OH = -5 mA	Full range	13.5		v	
	1	2	14.2 14.9		i	
	OH = - I MA	Full range	14.2			
Supply auront		25 °C	•	600		
Supply current	j F	Full range		800	μΑ	



PARAMETER	TEST C	CONDITIONS [†]	MIN TYP	MAX	UNIT	
Threehold university		25 °C	11.4 12	12.6	1	
I freshold voltage level	1. S	Full range	10.9	12.7	v	
Threshold surrent		25 °C	10			
Threshold current		MAX	75			
		25 °C	5.6 6	6.4	V	
rigger voltage level		Full range	5.5	6.5	٦ °	
Tuggar current		25 °C	10			
nigger conent		MAX	75			
Pasat valtage lavel		25 °C	0.4 1.1	1.5		
Heset voltage level		Full range	0.3	1.8	ŢŇ	
Root auront		25 °C	10	200		
Reset current		MAX	75		7 PA	
Control voltage (open-circuit) as a percentage of supply voltage		MAX	66.7%			
P. I. I. I. I.	1 100 1	25°C	0.72	1.5	1	
Discharge switch on-state voltage	IOL = TOU MA	Full range		1.6	v	
Discharge switch off state surrest		25°C	0.1			
Discharge switch on-state current		MAX	0.5			
	1	25 °C	0.04	0.3		
cow-level output voltage	OL = 3.2 MA	Full • ə		0.35		
Link lavel	1	2 .	17.3 17.9			
High-level output voltage	H = -1  mA	Full a	17.3		<b>7 v</b>	
Supply ourset		2 1	420	600		
Supply current		Full range		800	μΑ	

## electrical characteristics at specified free-air temperature, VDD = 18 V

[†]Full range (MIN to MAX) is 0°C to 70°C.

## operating characteristics, $V_{DD} = 5 V$ , $T_A = 25 °C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
Initial error of timing interval [‡]	$V_{DD} = 5 V$ to 15 V,		1%	3%	
Supply voltage sensitivity	$R_A = R_B = 1 k\Omega$ to 100 k $\Omega$ ,		0.1	0.5	%/V
of timing interval	$C_T \approx 0.1 \mu\text{F}$ , See Note 2				
Output pulse rise time	B: - 10 M0 C: - 10 -5		20	75	
Output pulse fall time			15	60	ns
Maximum frequency in	$R_A = 470 \Omega, R_B = 200 \Omega,$	1.0			MHz
astable mode	$C_T = 200 \text{ pF}$ , See Note 2	1.2	1.8	e	

[‡]Timing interval error is defined as the difference between the measured value and the nominal value of a random sample. NOTE 2:  $R_A$ ,  $R_B$ , and  $C_T$  are as defined in Figure 1.



## TLC551C LinCMOS™ TIMER





FIGURE 1. CIRCUIT FOR ASTABLE OPERATION

## TLC552C DUAL LinCMOS™ TIMER

D2796, FEBRUARY 1984-REVISED MAY 1988

- Very Low Power Consumption . . . 2 mW Typ at VDD = 5 V
- Capable of Operation in Astable Mode
- CMOS Output Capable of Swinging Rail to Rail
- High Output-Current Capability
  - ... Sink 100 mA Typ
  - ... Source 10 mA Typ
- Output Fully Compatible with CMOS, TTL, and MOS
- Low Supply Current Reduces Spikes During Output Transitions
- High-Impedance Inputs . . . 10¹² Ω Typ
- Single-Supply Operation from 1 V to 18 V
- Functionally Interchangeable with the NE556; Has Same Pinout

#### description

The TLC552 is a monolithic timing circuit fabricated using TI's LinCMOS[™] process, which provides full compatibility with CMOS, TTL, and MOS logic and operation at frequencies up to 2 MHz. Accurate time delays and oscillations are possible with smaller, less-expensive timing capacitors than the NE555 because of the high input impedance. Power consumption is low across the full range of power supply voltages.

Like the NE556, the TLC552 has a trigger level approximately one-third of the supply voltage and a threshold level approximately two-thirds of the supply voltage. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flipflop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input



#### functional block diagram (each timer)



Reset can override Trigger and Threshold, Trigger can override Threshold,

#### AVAILABLE OPTIONS

SYMBOLIZATION DEVICE PACKAGE		OREDATING	V- MAY
			at 25 °C
520102	SUFFIX		4120 0
TLC552C	D,N	0°C to 70°C	3.8 mV

The D packages are available taped and reeled. Add the suffix R to the device type when ordering. (i.e. TLC552CDR)

can override all other inputs and can be used to initiate a new timing cycle. If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is low, a low-impedance path is provided between the discharge terminal and ground.

While the CMOS output is capable of sinking over 100 milliamperes and sourcing over 10 milliamperes, the TLC552 exhibits greatly reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling capacitors required by the NE556.

LinCMOS is a trademark of Texas Instruments

Copyright © 1984, Texas Instruments Incorporated

## TLC552C DUAL LinCMOS™ TIMER

#### description (continued)

These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 volts as tested under MIL-STD-883C, Method 3015.2. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

All unused inputs should be tied to an appropriate logic level to prevent false triggering.

The TLC552C is characterized for operation from 0°C to 70°C.

		FUNCTION TABLE		
RESET VOLTAGE [†]	TRIGGER VOLTAGE [†]	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH
< MIN	Irrelevant	Irrelevant	Low	On
>MAX	<min< td=""><td>Irrelevant</td><td>High</td><td>Off</td></min<>	Irrelevant	High	Off
>MAX	>MAX	>MAX	Low	On
>MAX	>MAX	< MIN	As previous	ly established

 $^{\dagger}\text{For conditions shown as MIN or MAX, use the appropriate value specified under electrical characteristics$ 

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VDD (see Note 1)	18 V
Input voltage range (any input)	DOV C
Sink current, discharge or output	50 mA
Source current, output	15 mA
Continuous total dissipation See Dissipation Rating	Table
Operating free-air temperature range	70°C
Storage temperature range	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	260 °C

NOTE 1: All voltage values are with respect to network ground terminal.

#### DISSIPATION RATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE TA	
D	950 mW	7.6 mW/°C	25 °C	
N	1150 mW	9.2 mW/°C	25 °C	

#### recommended operating conditions

	Miv	MAX	JNIT
Supply voltage, VDD		18	· ·
Operating free-air temperature, TA	0	70	°C



PARAMETER	TEST CO	NDITIONS	MIN	түр	MAX	UNIT	
		25 °C	0.475	0.67	0.85	V	
I hreshold voltage level		Full range	0.45		0.875	ŢŤ	
<b></b>		25 °C		10			
I hreshold current		MAX		75		] PA	
T		_25 °C	0.15	0.33	0.425	V	
Trigger voltage level	1	Full range	0.1		1.45	ľ	
<b>T</b> .				10			
rigger current		MAX		75		_ pA	
Reset voltage level		25 °C	0.4	0.7	1	v	
		Full 1-9	0.3		1	v	
Reset current			10				
	Ι Γ	MAX		75			
Control voltage (open-circuit) as a percentage of supply voltage		MAX		66.7%			
		25 °C		0.02	0.15		
Discharge switch on-state voltage	$I_{OL} = 100 \mu A$	Full range			0.2	٦ ۲	
		25 °C		0.1		- 0	
Discharge switch off-state current		MAX		0.5		- nA	
		25 °C		0.03	0.2		
Low-level output voltage	10L = 100 µA	Full range			0.25	7 *	
		25 °C	0.6	0.98		1	
High-level output voltage	OH = -10 μA	Full range	0.6			٦ř	
-		25 °C		30	200		
Supply current		Full range			300	μΑ	

electrical characteristics at specified free-air temperature, VDD = 1 V

[†]Full range (MIN to MAX) is 0°C to 70°C.

Special Functions **A** 



## TLC552C DUAL LinCMOS™ TIMER

## electrical characteristics at specified free-air temperature, VDD = 2 V

PARAMETER	TEST CO	NDITIONS [†]	MIN TYP	MAX	UNIT	
These hand we have a law of		25 °C	0.95 1.33	1.65		
inresnoid voitage level		Full range	0.85	1.75	٦ Ý	
		25°C	10			
Inresnoid cuffent	T	MAX	75			
T-1		25 °C	0.4 0.67	0.95		
rigger voltage level	F	Full range	0.3	1.05	1 V	
Triana autorit		25 °C	10			
rigger current		MAX	75		PA	
Baset welterer terrel		25 °C	0.4 1.1	1.5		
Reset voltage level		Ful e	0.3	1.8	1 °	
P		· ·	10			
Reset current	1 [	MAX	75		рА	
Control voltage (open-circuit) as a percentage of supply voltage		MAX	66.7%			
Production and the second s		25 °C	0.03			
Discharge switch on-state voltage	IOL = I MA	Full range		U.e.	1 °	
Bischaus witch off states		25 °C	0.1			
Discharge switch off-state current		MAX	0.5			
1 1 t t		25 °C	0.07	0.3		
Low-rever output voltage		Full range		0.35	T V	
	1 200 4	25 °C	1.5 1.9		1.	
rign-ievel output voltage	$OH = -300 \mu A$	Full range	1.5		1 *	
Supply support		25 °C	130	500		
Supply current		Full range		800		



PARAMETER	TEST CO	NDITIONS [†]	MIN	TYP	MAX	UNIT
		25 °C	2.8	3.3	3.8	V
Threshold voltage level	T T	Full range	2.7		3.9	1 °
		25 °C		10		- 0
Inreshold current		MAX		75		L PA
<b>T</b> :		25 °C	1.36	1.66	1.96	V
rigger voltage level	Γ	Full range	1.26	-	2.06	
		25 °C		10		
I rigger current		MAX		75		рА
Design from the set		25 °C	0.4	1.1	1.5	V
Reset voltage level	Г	Full range	0.3		1.8	٦. ĭ
2		25 °C		10		
Heset current		MAX		75		
Control voltage (open-circuit) as a percentage of supply voltage		MAX	60	3.7%		
		25 °C		0.14	0.5	
Discharge switch on-state voltage	IOL = 10 mA	Full range			0.6	7 °
		25 °C		0.1		
Discharge switch off-state current	·	MAX		0.5		
	0 - 0	25 °C		0.21	0.4	
	IOL = 8 MA	Full range			0.5	
	L F TA	25 °C		0.13	0.3	
Low-level output voltage	IOL = 5 MA	Full range			0.4	] ľ
	1 22-4	25 °C		0.08	03	
	IOL = 3.2 MA	Full a			0.00	
	1	2	4.1	4.8		V
High-level output voltage	OH = -1 MA	Full range	4.1			
		25 °C		340	700	
Supply current	Г	Full range			1000	

## electrical characteristics at specified free-air temperature, VDD = 5 V



## TLC552C DUAL LinCMOS™ TIMER

### electrical characteristics at specified free-air temperature, VDD = 15 V

PARAMETER	TEST CO	NDITIONS	MIN TYP	MAX	UNIT
		25 °C	9.45 10	10.55	
Threshold voltage level		Full range	9.35	10.65	v
Theorem - 14		25°C	10		
Threshold current	T		75		PA
		20-6	4.65 5	5.35	
ungder vorrage iever		Full range	4.55	5.45	v
T-in-on automat		25 °C	10		
ingger current	Γ	MAX	75	1.00	PA
Poset veltere level		25 °C	0.4 1.1	1.5	
neset voltage level	Ι Γ	Full range	0.3	1.8	v
Poost ourrent		25 °C	10		
Reset current	Γ	MAX	75		PA
Control voltage (open-circuit) as a percentage of supply voltage		МАХ	66.7%		
		25 °C	0.77	1.7	
Discharge switch on-state voltage		Full range		1.8	v
Discharge with the off states are stated		25 °C	0.1		
Discharge switch off-state current	F	MAX	0.5		nA
	100 1	25 °C	1.28	3.2	
		Full range		3.6	
Low lovel output veltage	10 50 - 1	25 °C	0.63	1	
cow-level output voltage		Full range		1.3	v
	10 - 10 - 10	25 °C	0.12	0.3	
		Full range		0.4	
	10 - 10 - 10	25 °C	12.5 14.2		
		Full •a	12.5		
High-level output voltage		2	13.5 14.6		
		Full range	13.5		l v
	1	25 °C	14.2 14.9		
	OH = -I MA	Full range	14.2		
Sumaha auront		25 °C	0.72	1.2	
Supply current		Full range		1.6	mA



PARAMETER	TEST CO	NDITIONS [†]	MIN T	YP	MAX	UNIT
Threehold ushees lough		25 °C	11.4	12	12.6	
Inresnoid voitage ievei		Full range	10.9		12.7	
Threshold surgest		25 °C		10		
Threshold current	Γ	MAX		75		1 PA
		25 °C	5.6	6	6.4	
ringger voltage level		Full • • • • •	5.5	-	6.5	1 V
Triagen europt		2		10	1.1.1	
ingger current		MAX		75	-	PA
Posst voltage level		25 °C	0.4	1.1	1.5	1
Reset voltage level		Full range	0.3		1.8	1 *
Rear and a second		25 °C		10		
Reset current		MAX		75		PA
Control voltage (open-circuit) as a percentage of supply voltage		MAX	66.	7%		
Disabase suiteb as state unlasse	100 4	25 °C	0.	72	1.5	1
Discharge switch on-state voltage	IOL = 100 mA	Full range			1.6	
Discharge quiteb off state summer		25 °C		D.1		
Discharge switch bit-state current		MAX		0.5		nA
	1 22-1	25 °C	0.	04	0.3	
Low-level output voltage	IOL = 3.2 MA	Full range			0.35	· ·
	1	25 °C	17.3 1	7.9		
nigii-ievei output voitage	OH = -I MA	Full range	17.3			
Sumply oursent		25 °C	0.	84	1.2	
Supply current	E E E E E E E E E E E E E E E E E E E	Full range			1.6	1 mA

## electrical characteristics at specified free-air temperature, VDD = 18 V

[†] Full range (MIN to MAX) is 0°C to 70°C.

## operating characteristics, VDD = 5 V, TA = 25 °C (unless otherwise noted)

PARAMETER	an an ann an All Allanda	·	TYP	MAX	UNIT
Initial error of timing • . al [‡]	$V_{DD} = u + tu i u +,$		1%	3%	1.000-10
Supply voltage sensi · of timing interval	$R_A = R_B = 1 k\Omega$ to 100 k $\Omega$ , $C_T = 0.1 \mu F$ , See Note 2		0.1	0.5	%/V
Output pulse rise time	B 10 M0 0 10 -F		20	75	
Output pulse fall time	$H_{L} = 10 MM, C_{L} = 10 \text{ pr}$		15	60	ns
Maximum frequency in astable mode	$R_A = 470 \Omega$ , $R_B = 200 \Omega$ , C _T = 200 pF, See Note 2	1.2	2.8		MHz

NOTE 2: RA, RB, and CT are as defined in Figure 1.

[‡]Timing interval error is defined as the difference between the measured value and the nominal value of a random sample.



## TLC552C DUAL LinCMOS™ TIMER





FIGURE 1. CIRCUIT FOR ASTABLE OPERATION





## TLC555M, TLC555I, TLC555C LinCMOS™ TIMERS

D2784, SEPTEMBER 1983-REVISED OCTOBER 1988

7 DSH

5 CONT

] THRES

TLC555M ... JG PACKAGE TLC555I, TLC555C ... D OR P PACKAGE

(TOP VIEW)

GND TI US VDD

2

3 6

TRIG

OUT

RESET

- Very Low Power Consumption . . . 1 mW Typ at VDD = 5 V
- Capable of Operation in Astable Mode
- CMOS Output Capable of Swinging Rail to Rail
- High Output-Current Capability
  . . . Sink 100 mA Typ
  - ... Source 10 mA Typ
- Output Fully Compatible with CMOS, TTL, and MOS
- Low Supply Current Reduces Spikes During Output Transitions
- High-Impedance Inputs . . . 10¹² Ω Typ
- Single-Supply Operation from 2 V to 18 V
- Functionally Interchangeable with the NE555; Has Same Pinout

#### description

The TLC555 is a monolithic timing circuit fabricated using TI's LinCMOS[™] process, which provides full compatibility with CMOS, TTL, and MOS logic and operation at frequencies

up to 2 MHz. Accurate time delays and oscillations are possible with smaller, less-expensive timing capacitors than the NE555 because of the high input impedance. Power consumption is low across the full range of power supply voltage.

Like the NE555, the TLC555 has a trigger level approximately one-third of the supply voltage and a threshold level approximately two-thirds of the supply voltage. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is low, a low-impedance path is provided between the discharge terminal and ground.

While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC555 exhibits greatly reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling capacitors required by the NE555.

These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015. However, care should be exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric performance.

All unused inputs should be tied to an appropriate logic level to prevent false triggering.

The TLC555M is characterized for operation over the full military temperature range of -55 °C to 125 °C. The TLC555I is characterized for operation from -40 °C to 85 °C. The TLC555C is characterized for operation from 0 °C to 70 °C.

LinCMOS is a trademark of Texas Instruments Incorporated.





NC-No internal connection

4-195

## TLC555M, TLC555I, TLC555C LinCMOS™ TIMERS

-			PACKA	GE	
RANGE	RANGE	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)
0°C	2 V				
to	to	TLC555CD			TLC555CP
70°C	18 V	1			
-40°C	3 V				
to	to	TLC555ID			TLC555IP
85 °C	18 V				
~ 55 °C	5 V				
to	to		TLC555MFK	TLC555MJG	
125°C	18 V				

AVAILABLE OPTIONS

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC555CDR).

RESET VOLTAGE [†]	TRIGGER VOLTAGE [†]	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH
<min< td=""><td>irre . • •</td><td>irrelevant</td><td>Low</td><td>On</td></min<>	irre . • •	irrelevant	Low	On
>MAX	< Y '.	Irrelevant	High	Off
>MAX	>MAX	>MAX	Low	On
>MAX	>MAX	<min< td=""><td>As previou</td><td>sly established</td></min<>	As previou	sly established

#### FUNCTION TABLE

[†]For conditions shown as MIN or MAX, use the appropriate value specified under electrical characteristics.

#### functional block diagram



Pin numbers are for all packages except FK. Reset can override Trigger, which can override Threshold.



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TLCSSSM	TLC5551	TLC555C	UNIT
Supply voltage (see Note 1)	tage (see Note 1)		18	18	l v
input voitage	put voitage		-0.3 to V _{DD}	-0.3 to VDD	V
Sink current, discherge or output		150	1 50	150	mA
Source current, output		15	15	15	mA
Continuous total power dissipation			See L: ation Ratio	ng Tabie	
Operating free-air temperature range		- 55 to 125	-40 10 85	0 to 70	°C
Storage temperature range		- 65 to 150	-65 to *•	- 65 to 150	٥C
Case temperature for 60 seconds	FK package				
Leed temperature 1,6 mm (1/15 inch) from case for 60 seconds	JG package	300			°c
Lead tempersture 1,6 mm (1/16 inch) from csse for 10 seconds	D or P package		260	260	1

NOTE 1: All voltage velues are with respect to network ground terminal.

#### DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25 ^{\circ}C$	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	. mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A



electrical characteristics at specified free-air temperature,  $V_{DD} = 3 V$  for TLC555I,  $V_{DD} = 2 V$  for TLC555C

		auat		TLC-566	1	1	L	2	
PARAMETER	TEST CONDITIO	JNS	MIN	TYP	MAX	MIN	111	MAX	UNIT
		25 °C	1.6		2.4	0.95	1.33 、	1.65	v
I hreshold voltage level		Full range	1.5		2.5	0.85	66.7%	1.75	v
The shall see at	14.15	25 °C	1	10			10		- 1
I nresnoia current		MAX	1	- · ·			75		рА
<b>T</b>		25 °C	0.71	1.0	1.29	0.4	0.67	0.95	v
i rigger voltage level		Ful · ·	0.61		1.39	0.3	0.335	61.05	v
		2.		10			10		- 4
I rigger current		MAX		150			75		рА
		25 °C	0.4	1.1	1.5	0.4	1.1	1.5	v
Heset voltage level		Ful · .a	0.3		1.8	0.3		2	· ·
				10		1	10		- 4
Reset current		MAX		150			75		
Control voltage (open-circuit) as a percentage of supply voltage		MAX		66.7%			66.7%		
		25°C		0.03	0.2	S. 1. 2015	0.03	0.2	
Discharge switch on-state voltage	IOL = 1 mA	Full range			0.375			0.25	1 *
		2		0.1			0.1		- 4
Discharge switch off-state current		MAX	10	120			0.5		nA
		25°C		0.07	0.3		0.07	0.3	
Low-level output voltage	IOL = I MA	Full . )			0.4			0.35	· ·
		2	1.5	1.9	_	1.5	1.9		v
High-level output voltage	$10H = -300 \mu A$	Full range	2.5		500.1	1.5			ľ
		25°C			250			250	
Supply current		Full range				400			μΑ

[†]Full range (MIN to MAX) is -40°C to 85°C for TLC5551 and 0°C to 70°C for TLC555C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.



				TLC556	N		TLC556	1		TLC556	c	
PARAMETER	TEST CONDIT	TIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	2.8	3.3	3.8	2.8	3.3	3.8	2.8	3.3	3.8	
Threshold voltage level		Full range	2.7		3.9	2.7		3.9	2.7		3.9	v
-		25°C		10			10		10	10		- 1
I nresnola current		MAX		5000			150		10.00	75		pA
		25 °C	1.36	1.66	1.96	1.36	1.66	1.96	1.36	1.66	1.96	v
Trigger voltage level		Full range	1.26	1.000	2.06	1.26		2.06	1.26		2.06	v
Timer	· · · · · · · · · · · · · · · · · · ·	25°C		10			10			10		-
ingger current				5000			150			75		PA
Beautively and level			0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	1.5	v
Reset voltage level		Full range	0.3		1.8	0.3	1.51	1.8	0.3		1.8	
<b>B</b>		Γ		10			10			10		- 4
Reset current		MAX		5000			150			75		pA
Control voltage (open-circuit) as a percentage of supply voltage		МАХ		66.7%			66.7%			66.7%		
		25°C		0.14	0.5	in the second	0.14	0.5		0.14	0.5	
Discharge switch on-state voltage	10L = 10 mA	Full range			0.6		1.25	0.6			0.6	v
<b>B</b> ¹		25.00		0.1			0.1			0.1		- 4
Discharge switch ott-state current	and the second	- va.		120	1000		120	1		0.5		nA
		20.0		0.21	0.4	12 19 1	0.21	0.4		0.21	0.4	
	IOL = 8 MA	Full range			0.6			0.5			0.5	
I and the state of the state		25°C	)	0.13	0.3		0.13	0.3		0.13	0.3	v
Low-level output voltage	IOL = 5 mA	Full range			0.45			0.4			0.4	v
		25°C		0.08	0.3		0.08	0.3		0.08	0.3	
	IOL = 3.2 MA	Full range			0.4			0.35			0.35	
		<b>.</b>	4.1	4.8		4.1	4.8		4.1	4.8		
riign-ievel output voitage	'OH = - I MA	Full range	4.1			4.1			4.1			v
	0. N 0	25°C		170	350		170	350		170	350	
Supply current	See Note 2	Full range			700	1		600			500	μA

#### electrical characteristics at specified free-air temperature, $V_{DD} = 5 V$

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC555M, -40°C to 85°C for TLC555I, and 0°C to 70°C for TLC555C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.



## TLC555M, TLC555I, TLC555C LinCMOS™ TIMERS

DADADIETED	TFOT CONDIT	ionst.	т		N		TI 1 4	1	TLC556C			
PARAMETER	TEST CONDIT	IONS	MIN	· • • •	MAX	MIN	1.1	MAX	MIN	TYP	MAX	UNI
	11	25°C	9.45	10	10.55	9.45	10	10.55	9.45	10	10.55	
Threshold voltage level	1	Full range	9.35		10.65	9.35		10.65	9.35		10.65	v
		25°C		10	201		10			10		
Threshold current		· • • •					150	10.00	1	75		рА
		20 6	4.65	ь.	5.35	4.65	5	5.35	4.65	5	5.35	
ingger voltage level		Full range	4.55		5.45	4.55		5.45	4.55		5.45	v
		25°C		10			10			10		
ingger current		MAX		5000			150			75		рА
leset voltage level		25°C	0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	1.5	
Reset voitage level	<b>u</b>	Full range	0.3		1.8	0.3		1.8	0.3		1.8	v
0		25°C	1	10			10			10		
Reset current		MAX		5000			150			75		рА
Control voltage (open-circuit) as a percentage of supply voltage		мах	6	6.7%			66.7%			66.7%		
Discharge switch on-state voltage		25 °C	1	0.77	1.7		0.77	1.7		0.77	1.7	
	IOL = 100 MA	Full range	1		1.8			1.8			1.8	v
	1	25°C		0.1			0.1			0.1		
Discharge switch off-state current	2	MAX	1	120			120	1		0.5		n#
		25°C	1	1.28	3.2		1.28	3.2		1.28	3.2	
	IOL = 100 MA	Full range	1	992	3.8			3.7			3.6	
		25°C	1.5	0.63	1		0.63	1		0.63	1	
Low-level output voltage	IOL = 50 MA	Full range		-	1.5			1.4			1.3	v
	10	25°C		0.12	0.3		0.12	0.3		0.12	0.3	
		Full range			0.45			0.4			0.4	
()		25°C	12.5	14.2	Carlo I.	12.5	14.2	The second second	12.5	14.2	200.25	
	10H = -10 mA	Full range	12.5			12.5			12.5			
High-level output voltage		25 °C	13.5	14.6		13.5	14.6		13.5	14.6		
	10H = - 5 MA	Full range	13.5	1111		13.5			13.5			v
		25°C 14.2 14.9	_	14.2	14.9		14.2	14.9		1		
	10H = -1 mA	Full range	14.2			14.2			14.2			
Supply auront	See Note 2	25°C		360	600		360	600		360	600	
Supply current	See Note 2	Full range			1000			900			800	1 ^{μρ}

#### electrical characteristics at specified free-air temperature, VDD = 15 V

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC555M, -40°C to 85°C for TLC555I, and 0°C to 70°C for TLC555C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.



		t	1.0	LC556	N	1	TLC556		1	TLC556	C	
PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNI
-		25°C	11.4	12	12.6	11.4	12	12.6	11.4	12	12.6	
Inreshold voltage level		Full range	10.9	C	12.7	10.9		12.7	10.9		12.7	v
Theorematic		25°C		10	1-1	1	10			10		
Threshold current		MAX		5000	10.0	0.20	150	1.1.1.1	1.1	75	- 11	рА
-		25°C	5.6	6	6.4	5.6	6	6.4	5.6	6	6.4	
rigger voltage level		Full range	5.5		6.5	5.5		6.5	5.5		6.5	v
		25°C		10		and the second	10			10		
ngger current		MAX		5000			150			75		pA
Peret veltere tour		25 °C	0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	1.5	
Reset voltage level		Full range	0.3		1.8	0.3		1.8	0.3		1.8	v
Peacet surrent		25 °C	1	10			10			10	0.311	
Reset current		MAX		5000			150		P	75		рА
Control voltage (open-circuit) as a percentage of supply voltage		МАХ		66.7%			66.7%	1		66.7%		
		25°C		0.72	1.5		0.72	1.5	12.000	0.72	1.5	
Discharge switch on-state voltage	10L = 100 mA	Full range		100	1.6			1.6			1.6	v
		25°C	22	0.1			0.1	-		0.1		
Discharge switch off-state current		· · · · ·		120	1. A.		120	-		0.5		n.A
and the second second second			1999	0.04	0.3	C. C. Contraction	0.04	0.3		0.04	0.3	
Low-level output voltage	IOL = 3.2 MA	Full range			0.4			0.35	E.C.	200	0.35	v
tillet level externe velke er	1	25°C	17.3	17.9		17.3	17.9		17.3	17.9		
migin-lever output voltage	OH = -1 MA	Full range	17.3			17.3		2	17.3		1.2.5	v
Sumply ourset	San Neta 2	25 °C	-		600			600	1		600	
Supply content	308 NOL8 2	Full range	-			L.		900		1.00	800	μΑ

#### electrical characteristics at specified free-air temperature, VDD = 18 V

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC555M, -40°C to 85°C for TLC555I, and 0°C to 70°C for TLC555C.

NOTE 2: These values apply for the expected operating configuration in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.

## operating characteristics, $V_{DD} = 5 V$ , $T_A = 25 °C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Initial error of timing interval [‡]	$V_{DD} = 5 V \text{ to } 15 V,$	1% 3%	
Supply voltage sensitivity of timing interval	$R_A = R_B = 1 k\Omega \text{ to } 100 k\Omega,$ $C_T = 0.1 \mu F, \qquad \text{See Note 3}$	0.1 0.5	%/V
Output pulse rise time	B 10110 0 10 F	20 75	1000
Output pulse fall time	$R_{L} = 10 \text{ MM},  C_{L} = 10 \text{ pF}$	15 60	ns
Maximum frequency in astable mode	R _A = 470 Ω, R _B = 200 Ω C _T = 200 pF, See Note 3	1.2 2.1	MHz

[‡]Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.

NOTE 3:  $R_A$ ,  $R_B$ , and  $C_T$  are as defined in Figure 1.



## TLC555M, TLC555I, TLC555C LinCMOS™ TIMERS



Pin numbers are for all packages except FK.

FIGURE 1. CIRCUIT FOR ASTABLE OPERATION





## TLC556M, TLC556I, TLC556C DUAL LinCMOS™ TIMERS

D2796, FEBRUARY 1984-REVISED OCTOBER 1988

- Very Low Power Consumption . . . 2 mW Typ at VDD = 5 V
- Capable of Operation in Astable Mode
- CMOS Output Capable of Swinging Rail to Rail
- High Output-Current Capability
  ... Sink 100 mA Typ
  ... Source 10 mA Typ
- Output Fully Compatible with CMOS, TTL, and MOS
- Low Supply Current Reduces Spikes During Output Transitions
- High-Impedance Inputs . . . 10¹² Ω Typ
- Single-Supply Operation from 2 V to 18 V
- Functionally Interchangeable with the NE556; Has Same Pinout

#### description

The TLC556 is a monolithic timing circuit fabricated using Tl's LinCMOS[™] process, which provides full compatibility with CMOS, TTL, and MOS logic and operation at frequencies up to 2 MHz. Accurate time delays and oscillations are possible with smaller, less-expensive timing capacitors than the NE556 because of the high input impedance. Power consumption is low across the full range of power supply voltages.

Like the NE555, the TLC556 has a trigger level approximately one-third of the supply voltage and a threshold level approximately two-thirds of the supply voltage. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is low, a low-impedance path is provided between the discharge terminal and ground.

While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC556 exhibits greatly reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling capacitors required by the NE556.

These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015. However, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance.

All unused inputs should be tied to an appropriate logic level to prevent false triggering.

The TLC556M is characterized for operation over the full military temperature range of -55 °C to 125 °C. The TLC556I is characterized for operation from -40 °C to 85 °C. The TLC556C is characterized for operation from 0 °C to 70 °C.

LinCMOS is a trademark of Texas Instruments Incorporated.

Phili UL1014 16.1.5 Jocuments contain information in the first winn date. Products conform to opticitize the sector of the sector in the sector in the sector standard warranty. Production processer is in the necessarily include tosting of all permitting.





NC-No internal connection

4

## TLC556M, TLC556I, TLC556C DUAL LinCMOS™ TIMERS

-			PACKA	GE	
RANGE	RANGE	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP	PLASTIC DIP (N)
0°C	2 V				
to	to	TLC556CD			TLC556CN
70°C	18 V			and the second second	
-40°C	3 V				
to	to	TLC556ID			TLC556IN
85 °C	18 V				1
-55°C	5 V				
to	to		TLC556MFK	TLC556MJ	
125°C	18 V				61 C

#### AVAILABLE OPTIONS

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC556CDR).

RESET VOLTAGE [†]	TRIGGER VOLTAGE [†]	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH
< '.' '.	Irrelevant	Irrelevant	Low	On
>MAX		Irrelevant	High	Off
>MAX	>MAA	>MAX	Low	On
>MAX	>MAX	<min< td=""><td>As previou</td><td>sly established</td></min<>	As previou	sly established

#### FUNCTION TABLE

[†]For conditions shown as MIN or MAX, use the appropriate value specified under electrical characteristics.

OUTPUT

DISCHARGE

#### functional block diagram (each timer)



Reset can override Trigger and Threshold. Trigger can override Threshold.



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TLC556M	TLC556I	TLC556C	UNIT
Supply voltage (see Note 1)		18	18	18	V
Input voltage		-0.3 to VDD	-0.3 to V _{DD}	-0.3 to V _{DD}	V
Sink current, discharge or output		150	150	150	mA
Source current, output		15	15	15	mA
Continuous total power dissipation			See Dissipation Ratin	ng Table	
Operating free-air temperature range		- 55 to 125	-40 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	FK package	260			
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package	300			°c
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package		260	260	]

NOTE 1: All voltage values are with respect to network ground terminal.

#### DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	TA = 70°C POWLH RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	• - nW	494 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	N/A



## TLC556I, TLC556C DUAL LinCMOS™ TIMERS

## electrical characteristics at specified free-air temperature, $V_{DD} = 3 V$ for TLC556I, $V_{DD} = 2 V$ for TLC556C

DADAMETED	TECT CONDITI	ouct		TLC556	1	1	LC5560	;	
PARAMETER	TEST CONDITION	UNSI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Thursday a large large		25 °C	1.6	2.0	2.4	0.95	1.33	1.65	
Threshold voltage level		Full range	1.5		2.5	0.85		1.75	v
Thread all automat		25°C		10			10		- 4
Threshold current		MAX	1	150			75		рА
		25°C	0.71	1.0	1.29	0.4	0.67	0.95	v
Trigger voltage level	diameter and the	Full : : 3	0.61		1.39	0.3		1.05	v
Trigger surrest		2.		10			10		- 0
Ingger current		MAX					75		рА
Report voltage loval		25 °C	0.4	1.1	1.5	0.4	1.1	1.5	V
Reset voltage level		Ful · .9	0.3		1.8	0.3		1.8	v
Peret evenet		2		10			10		- 1
Reset current		MAX		150			75		рА
Control voltage (open-circuit) as a percentage of supply voltage		MAX		66.7%			66.7%		
		25°C		0.03	0.2		0.04		
Discharge switch on-state voltage	IOL = 1 mA	Full range			0.375			6.40	v
		25 °C		01	2		0.1		
Discharge switch off-state current		MAX		·	1		0.5		nA
1 1	1 11	25°C		0.07	0.3	1	0.07	0.3	
Low-level output voltage	OL = 1 MA	Full range			0.4			0.35	v
I then be not entered under an	law - 200 A	2	1.5	1.9		1.5	1.9		
High-level output voltage	$OH = -300 \mu A$	Full +	2.5		Carlos and	1.5			V
County and		2.		130	500		130	500	
Supply current		Full range			1000				μΑ

[†]Full range (MIN to MAX) is -40 °C to 85 °C for TLC556I and 0 °C to 70 °C for TLC556C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.



		t	1	LC556	N		TLC556	1		TLC556	c	
PARAMETER	TEST CONDIT	TIONS '	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	2.8	3.3	3.8	2.8	3.3	3.8	2.8	3.3	3.8	
Threshold voltage level		Full range	2.7		3.9	2.7		3.9	2.7		3.9	v
		25°C		10			10			10		
Threshold current		MAX			-		150			75	1000	рА
		25 °C	1.36	1.60	1.96	1.36	1.66	1.96	1.36	1.66	1.96	v
Trigger voltage level		Full range	1.26		2.06	1.26		2.06	1.26		2.06	v
-		25 °C		10			10			10		- 4
Trigger current		MAX		5000	1000		150			75		рд
		25°C	0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	1.5	
Reset voltage level		Full range	0.3		1.8	0.3		1.8	0.3		1.8	v
_		25°C		10			10			10		
Reset current		MAX		5000			150			75		рА
Control voltage (open-circuit) as a percentage of supply voltage		мах		66.7%			66.7%			66.7%		
		25°C		0.15	0.5		0.15	0.5		0.15	0.5	
Discharge switch on-state voltage	$I_{OL} = 10 \text{ mA}$	Full range			0.6			0.6			0.6	v
		25°C		0.1			0.1			0.1		
Discharge switch off-state current		MAX		120			2			0.5		nA
		25°C		0.21	0.4		0.21	0.4		0.21	0.4	
	OL = 8 mA	Full range		2000	0.6			0.5			0.5	
		25°C		0.13	0.3	1	0.13	0.3	1	0.13	0.3	
Low-level output voltage	IOL = 5 mA	Full range			0.45			0.4			0.4	v
		25°C		0.08	0.3	1.1	0.08	0.3		0.08	0.3	
	OL = 3.2 MA	Full range		ine and	0.4			0.35			0.35	
		25°C	4.1	4.8		4.1	4.8		4.1	4.8		v
High-level output voltage	10H = -1 mA	Full range	4.1			4.1			4.1			v
0	C No. 2	25°C		340	700		340	700		340	700	
Supply current	See Note 2	Full range			1400						1000	μA

#### electrical characteristics at specified free-air temperature, VDD = 5 V

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC556M, -40°C to 85°C for TLC556I, and 0°C to 70°C for TLC556C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.



## TLC556M, TLC556I, TLC556C DUAL LinCMOS™ TIMERS

electrical characteristics at specified free-air temperature, VDD = 15	electrical	characteristics	at specified	free-air temperature	VDD = 15	V
------------------------------------------------------------------------	------------	-----------------	--------------	----------------------	----------	---

		in an at	Т	LC556	м		TLC556	31	0.01	TLC556	С	
PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
The label and a label		25°C	9.45	10	10.55	9.45	10	10.55	9.45	10	10.55	
Inresnoid voltage level		Full range	9.35		10.65	9.35		10.65	9.35		10.65	v
		25 °C		10			10	2122		10		
Infestiola current		MAX		5000		10	150			75		рА
T-1		25°C	4.65	5	5.35	4.65	5	5.35	4.65	5	5.35	
rigger voltage level	1. 1	Full range	4.55		5.45	4.55		5.45	4.55		5.45	v
Trianat automat		25°C		10			10			10		
ingger current		MAX		5000			150			75		ря
Deast valence lovel		25°C	0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	1.5	
		Full range	0.3		1.8	0.3	5.4.7	1.8	0.3		1.8	•
Posst ourrest		25 °C		10			10			10		-
		MAX		5000			150			75		ря
Control voltage (open-circuit) as a percentage of supply voltage		мах		66.7%			66.7%			66.7%		
<b>N</b>		25°C		0.8	1.7		0.8	1.7		0.8	1.7	
Discharge switch on-state voltage	IOL = IUU MA	Full range	5		1.8		1	1.8			1.8	v
Discharge switch off state sweet		25 °C		0.1			0.1			0.1		
Discharge switch off-state current		MAX		120	1		2			0.5		nA
	100	25 °C	1	1 28	3.2		1.28	3.2		1.28	3.2	
	10L = 100 mA	Full range	-		3.8			3.7	1		3.6	
	1 50 mA	25°C		0.63	1		0.63	1		0.63	1	V
Low-level output voltage	10L - 30 mA	Full range			1.5			1.4			1.3	v
	1	25°C		0.12	0.3		0.12	0.3		0.12	0.3	
	IOL = IU MA	Full range			0.45			0.4	12		0.4	
	10	25°C	12.5	14.2	100	12.5	14.2		12.5	14.2		
	OH = -10  mA	Full range	12.5		_	12.5			12.5			
		25 °C	13.5	14.6		13.5	14.6		13.5	14.6		
mign-ievel output voitage	HH 5 MA	Full range	13.5			13.5			13.5			v
	1	25°C	14.2	14.9		14.2	14.9		14.2	14.9		
	OH = - I MA	Full range	14.2			14.2			14.2			
Supply automat	For Note 2	25 °C		0.72	1.2		0.72	1.2		0.72	1.2	~ ^
supply current	See Note 2	Full range			2			1.8	-		1.6	mA

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC556M, -40°C to 85°C for TLC556i, and 0°C to 70°C for TLC556C.

NOTE 2: These values apply for the expected operating configurations in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal.

		lowet		LC556	N	1	rlc556	1	1	LC556	c	
PARAMETER	TEST CONDIT	UNS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Theorem 1	(*************************************	25°C	11.4	12	12.6	11.4	12	12.6	11.4	12	12.6	
inreshold voltage level		Full range	10.9		12.7	10.9		12.7	10.9		12.7	v
Threehold average		25 °C		10			10			10		- 4
		MAX		5000			150		1	75		рА
T-i		25°C	5.6	6	6.4	5.6	6	6.4	5.6	6	6.4	
rigger voltage level		Full range	6.5		6.5	5.5		6.5	5.5	1.12	6.5	v
		25°C		10			10			10		
rigger current		MAX		5000			150			75		ρA
Prove university of the set		25 °C	0.4	1.1	1.5	0.4	1.1	1.5	0.4	1.1	15	
Reset voltage level		Full range	0.3		1.8	0.3		1.8	0.3		1.8	v
		25°C		10			10			10		
Reset current		MAX		5000			150			75		pA
Control voltage (open-circuit) as a percentage of supply voltage		МАХ		66.7%			36.7%			6.7%		
		25°C		0.73	1.5		0.73	1.5		0.73	1.5	
Discharge switch on-state voltage	OL = 100 mA	Full range		- and	1.6			1.6			1.6	v
		25 °C		0,1			0.1			0.1		
Discharge switch off-state current		MAX		120			2			0.5		n/P
		25°C		0.04	0.3		0.04	0.3		0.04	0.3	
Low-level output voltage	$I_{OL} = 3.2 \text{ mA}$	Full range			0.4		30.0	0.35			0.35	v
		25°C	17.3	17.9		17.3	17.9		17.3	17.9		
High-level output voltage	10H = -1  mA	Full range	17.3			17.3			17.3			v
2		25°C			1.2			1.2			1.2	
Supply current	See Note 2	Full range			2			1.8		-	1.6	mA

#### electrical characteristics at specified free-air temperature, VDD = 18 V

[†]Full range (MIN to MAX) is -55°C to 125°C for TLC556M, -40°C to 85°C for TLC556I, and 0°C to 70°C for TLC556C.

NOTE 2: These values apply for the expected operating configuration in which the Threshold terminal is connected directly to the Discharge terminal or to the Trigger terminal

4



## TLC556M, TLC556I, TLC556C DUAL LinCMOS™ TIMERS

## operating characteristics, VDD = 5 V, TA = 25 °C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Initial error of timing interval [†]	$V_{DD} = 5 V$ to 15 V,		1%	3%	
Supply voltage sensitivity of timing interval	$R_A = R_B = 1 k\Omega \text{ to } 100 k\Omega,$ $C_T = 0.1 \mu F, \qquad \text{See Note 3}$		0.1	0.5	%/V
Output pulse rise time			20	75	1.1.1
Output pulse fall time	$R_L = 10 M u$ , $C_L = 10 pF$		15	60	ns
Maximum frequency in astable mode	$R_A = 470 \Omega$ , $R_B = 200 \Omega$ , $C_T = 200 pF$ , See Note 3	1.2	2.1		MHz

[†]Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.

NOTE 3: RA, RB, and CT are as defined in Figure 3.

#### **TYPICAL CHARACTERISTICS**



FIGURE 2







Connecting the trigger input to the threshold input, as shown in Figure 3, causes the timer to run as a multivibrator. The capacitor  $C_T$  charges through  $R_A$  and  $R_B$  to the trigger voltage level (approximately 0.67V_{DD}) and then discharges through  $R_B$  only to the value of the threshold voltage level (approximately 0.33V_{DD}). The output is high during the charging cycle (t_H) and low during the discharge cycle (t_L). The duty cycle is controlled by the values of  $R_A$ ,  $R_B$ , and  $C_T$ , as shown in the equations below.

$$\begin{split} t_H &\approx C_T (R_A + R_B) \ln 2 \qquad (\text{ln } 2 = 0.693) \\ t_L &\approx C_T R_B \ln 2 \\ \text{Period} &= t_H + t_L \approx C_T (R_A + 2R_B) \ln 2 \end{split}$$

Output driver duty cycle =  $\frac{t_L}{t_H + t_L} \approx 1 - \frac{R_B}{R_A + 2R_B}$ Output waveform duty cycle =  $\frac{t_H}{t_H + t_L} \approx \frac{R_B}{R_A + 2R_B}$ 

The 0.1- $\mu$ F capacitor at the control pin in Figure 3 decreases the period by about 10%.

The formulas shown above do not allow for any propagation delay from the trigger and threshold inputs to the discharge output. These delay times add directly to the period and create differences between calculated and actual values that increase with frequency. In addition, the discharge output resistance ron adds to RB to provide another source of error in the calculation when RB is very low or ron is very high.

The equations below provide better agreement with measured values.

$$\begin{aligned} t_{H} &= C_{T} (R_{A} + R_{B}) & ln \Bigg[ 3 - exp \Bigg( \frac{-t_{PLH}}{C_{T} (R_{B} + r_{on})} \Bigg) \Bigg] &+ t_{PHL} \\ t_{L} &= C_{T} (R_{B} + r_{on}) & ln \Bigg[ 3 - exp \Bigg( \frac{-t_{PHL}}{C_{T} (R_{A} + R_{B})} \Bigg) \Bigg] &+ t_{PLH} \end{aligned}$$



The preceding equations and those given earlier are similar in that a time constant is multiplied by the logarithm of a number or function. The limit values of the logarithmic terms must be between In 2 at low frequencies and In 3 at extremely high frequencies. For a duty cycle close to 50%, an appropriate constant

for the logarithmic terms can be substituted with good results. Duty cycles less than 50%  $\frac{t_H}{t_H + t_L}$  will require that  $\frac{t_H}{t_I} < 1$  and possibly  $R_A \le r_{on}$ . These conditions can be difficult to obtain.

In monostable applications, the trip point of the trigger input can be set by a voltage applied to the control pin. An input voltage between 10% and 80% of the supply voltage from a resistor divider with at least 500  $\mu$ A bias provides good results.



Special Functions

## uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

13 NC

10 Vcc+

8 OUT --

9 NC

12 GAIN ADJ 2B

11 GAIN ADJ 1B

uA733M . . . J DUAL-IN-LINE PACKAGE

uA733C . . . D OR N PACKAGE

(TOP VIEW)

D922, NOVEMBER 1970-REVISED APRIL 1988

- 200-MHz Bandwidth
- 250-kΩ Input Resistance
- Selectable Nominal Amplification of 10, 100, or 400
- No Frequency Compensation Required
- Designed to be Interchangeable with Fairchild μA733M and μA733C

#### description

The uA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

Fixed differential amplification of 10, 100, or 400 may be selected without external components, or amplification may be adjusted from 10 to 400 by the use of a single external resistor connected between 1A and 1B. No external frequency-compensating components are required for any gain option.

The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general

# OUT + 7 8

Vcc – ∐₅

NC 6

NC 2

GAIN ADJ 2A 3

GAIN ADJ 1A





symbol



purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The uA733M is characterized for operation over the full military temperature range of -55 °C to 125 °C; the uA733C is characterized for operation from 0 °C to 70 °C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA733M	UA733C	UNIT
Supply voltage V _{CC+} (See Note 1)	8	8	V	
Supply voltage V _{CC-} (See Note 1)		- 8	-8	V
Differentiel input voltage		±5	±5	V
Common-mode input voltage		± 6	±6	V
Output current		10	10	mA
Continuous total power dissipation		See Dissip	ation Rating T	able
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range	,	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or U package	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package		<u> </u>	°C

NOTE 1. All voltage values, except differential input voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.



## uA733M, uA733C D!FFERENTIAL VIDEO AMPLIFIERS

DISSIPATION RATING TABLE								
PACKAGE	TA ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	T _A = 70°C POWER RATING	TA = 125°C POWER RATING			
D	500 mW	N/A	N/A	500 mW	N/A			
J (uA733M)	500 mW	11.0 mW/°C	104°C	500 mW	275 mW			
N	500 mW	N/A	N/A	500 mW	N/A			
U	500 mW	5.4 mW/°C	57 °C	432 mW	135 mW			

## electrical characteristics, $VCC_{+} = 6 V$ , $VCC_{-} = -6 V$ , $TA = 25^{\circ}C$

PARAMETER		TEST TEST CONDITIONS		GAIN	uA733M			"A733C			1.0.07	
				OPTION	1967	TYP	MAX	14	TYP	MAY	UNIT	
	have also al difference and al				1		400	500		400		
AVD voltage amplification	1	$V_{OD} = 1 V$		2	90	100	110		100	120	V/V	
				3	9	10	11	8	10	12		
		-			1		50			50	2	
BW	Bandwidth	2	$R_{S} = 50 \Omega$		2		90			٩n	-	MHz
					3		200	2.001				
10	Input offset current				Any		0.4	3	10.00	v.4	5	μA
118	Input bias current		the states		Any		9	20		9	30	μA
VICR	Common-mode input voltage range	1			Any*	±1			±1			v
Voc	Common-mode output voltage	1			Any	2.4	2.9	3.4	2.4	2.9	3.4	v
	Output affect with a				1		0.6	1.5		0.6	1.5	
V00	Output offset voltage		·		2&3	1	0.35	1		0.35	1.5	v
VOPP	Maximum peak-to-peak output voltage swing	1.			Any	3	4.7		3	4.7		v
-					1	1	4			4		
η	Input resistance	3	V _{OD} ≤ 1 V		2	20	24		10	24		kΩ
					3		250			250		
ro	Output resistance						20			20		Ω
Ci	Input capacitance	3	V _{OD} ≤ 1 V		2		2			2		pF
	Common-mode	1.1.1	$V_{IC} = \pm 1 V_{i}$	f ≤ 100 kHz	2	60	86		60	86		
CMRR	rejection ratio	4	$V_{IC} = \pm 1 V_{i}$	f = 5 MHz	2		70	-		70		dB
ksvr	Supply voltage rejection ratio (ΔVCC/ΔVIO)	1	$\Delta V_{CC+} = \pm 0.5$ $\Delta V_{CC-} = \pm 0.5$	v, v	2	50	70		50	70		dB
vn	Broadband equivalent input noise voltage	5	BW = 1 kHz to 10 MHz		Any		12			12		μV
			$\begin{array}{c} R_S = 50 \ \Omega, \\ Output voltage step = 1 \ V \end{array}$		1		7.5			7.5	-	
t _{pd} Propagation delay tim	Propagation delay time	pagation delay time 2			2		6.0	10	-	6.0	10	ns
					3	-	3.6			3.6		1
tr		-			1		10.5	3		10.5		
	Rise time	2	$R_{S} = 50 \Omega,$		2		4.5	10		4.5	12	ns
		Output voitage step = 1 v	3		2.5			2.5				
lsink(max)	Maximum output sink current				Any	2.5	3.6		2.5	3.6		mA
ICC	Supply current		No load,	No signal	Any		16	24		16	24	mA

[†] The gain option is selected as follows:

Gain Option1 . . . Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2 . . . Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3 . . . All four gain-adjust pins are open.



# electrical characteristics, V_{CC+} = 6 V, V_{CC-} = -6 V, T_A = -55 °C to 125 °C for uA733M, 0 °C to 70 °C for uA733C

PARAMETER		TEST	TEST TEST CONDITIONS		GAIN	uA733M		uA733C			
		FIGURE			OPTION	Yi4	MAX	111.	MA.	UNIT	
	Lorge signal differential				1		600				
AVD	voltage emplification	1	$V_{OD} = 1 V$		2	80	120	80	120	V/V	
	voitage amplification				3	8	12	8	12		
40	Input offset current				Any		5		6	μA	
Iв	Input bias current				Any	-	40		40	μA	
VICR	Common-mode input voltage range	1			Any	±1		±1		v	
					1		1.5		1.5		
v00	Output offset voitage		1		2&3	less.	1.2		1.5	v	
VOPP	Maximum peak-to-peak output voltage swing	1			Any	2.5		2.8		v	
ri	Input resistance	3	V _{OD} ≤ 1 V		2	8		8		kΩ	
CHIDD	Common-mode rejection ratio	Common-mode rejection ratio		$V_{IC} = \pm 1 V$ ,	f ≤ 100 kHz	2	50		50		
CMRR			4	$V_{IC} = \pm 1 V_{,}$	f = 5 MHz	2			-		aв
<b>ksv</b> r	Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO} )	1	$\Delta V_{CC+} = \pm 0.5$ $\Delta V_{CC-} = \pm 0.5$	v, v	2	50		50		dB	
l _{sink(max)}	Maximum output sink current				Апу	2.2		2.5		mA	
Icc	Supply current	22.01	No load,	No signal	Any		27		27	mA	

[†]The gain option is selected as follows:

Gain Option 1 . . . Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2 . . . Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3 . . . All four gain-adjust pins are open.

#### schematic







4

## uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

#### **DEFINITION OF TERMS**

Large-Signal Differential Voltage Amplification (AVD) The ratio of the change in voltage between the output terminals to the change in voltage between the input terminals producing it.

**Bandwidth** (BW) The range of frequencies within which the differential gain of the amplifier is not more than 3 dB below its low-frequency value.

Input Offset Current (IIO) The difference between the currents into the two input terminals with the inputs grounded.

Input Bias Current (IIB) The average of the currents into the two input terminals with the inputs grounded.

Input Voltage Range (V) The range of voltage that if exceeded at either input terminal will cause the amplifier to cease functioning properly.

Common-Mode Output Voltage (VOC) The average of the d-c voltages at the two output terminals.

**Output Offset Voltage** (VOO) The difference between the d-c voltages at the two output terminals when the input terminals are grounded.

Maximum Peak-to-Peak Output Voltage Swing (VOPP) The maximum peak-to-peak output voltage swing that can be obtained without clipping. This includes the unbalance caused by output offset voltage.

Input Resistance (ri) The resistance between the input terminals with either input grounded.

Output Resistance (ro) The resistance between either output terminal and ground.

Input Capacitance (Ci) The capacitance between the input terminals with either input grounded.

**Common-Mode Rejection Ratio** (CMRR) The ratio of differential voltage amplification to common-mode voltage amplification. This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

Supply Voltage Rejection Ratio (k_{SVR}) The absolute value of the ratio of the change in power supply voltages to the change in input offset voltage. For these devices, both supply voltages are varied symmetrically.

Equivalent Input Noise Voltage ( $V_n$ ) The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

**Propagation Delay Time**  $(t_{pd})$  The interval between the application of an input voltage step and its arrival at either output, measured at 50% of the final value.

Rise Time (tr) The time required for an output voltage step to change from 10% to 90% of its final value.

Maximum Output Sink Current (Isink(max)) The maximum available current into either output terminal when that output is at its most negative potential.

Supply Current (ICC) The average of the magnitudes of the two supply currents ICC1 and ICC2.


# uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

PARAMETER MEASUREMENT INFORMATION

test circuits







FIGURE 3



FIGURE 5



FIGURE 2







VOLTAGE AMPLIFICATION ADJUSTMENT FIGURE 6



# uA733M, uA733C Differential video amplifiers





# uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

## TYPICAL CHARACTERISTICS





# uA733M, uA733C Differential video amplifiers





D2442, JUNE 1978 REVISED MAY 1988

- Accurate Timing from Microseconds to Days
- Programmable Delays from 1 Time Constant to 255 Time Constants
- Outputs Compatible with TTL and CMOS
- Wide Supply-Voltage Range
- External Sync and Modulation Capability



#### description

These circuits consist of a time-base oscillator, and eight-bit counter, a control flip-flop, and a voltage regulator. The frequency of the time-base oscillator is set by the time constant of an external resistor and capacitor at pin 13 and can be synchronized or modulatd by signals applied to the modulation input. The output of the time-base section is applied directly to the input of the counter section and also appears at pin 14 (time base). The time-base pin may be used to monitor the frequency of the oscillator, to provide an output pulse to other circuitry, or (with the time-base section disabled) to drive the counter input from an external source. The counter input is activated on a negative-going transition. The reset input stops the time-base oscillator and sets each binary output, Q0 through Q7, and the time-base output to a TTL high level. After resetting, the trigger input starts the oscillator and all Q outputs go low. Once triggered, the uA2240C will ignore any signals at the trigger input until it is reset.

The uA2240C timer/counter may be operated in the free-running mode or with output-signal feedback to the reset input for automatic reset. Two or more binary outputs may be connected together to generate complex pulse patterns, or each output may be used separately to provide eight output frequencies. Using two circuits in cascade can provide precise time delays of up to three years.

The uA2240C is characterized for operation from 0°C to 70°C.

SYMBOLIZATION		OPERATING			
DEVICE	PACKAGE SUFFIX	TEMPERATURE RANGE	VT MAX at 25°C		
uA2240C	N	:0 70°C	2 V		

#### AVAILABLE OPTIONS



#### functional block diagram



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	۷
Output voltage: Q0 thru Q7	v
Output current: 00 thru 07 10 m	A
Regulator output current	A
Continuous dissipation at (or below) 25 °C free-air temperature	W
Operating free-air temperature range	'nC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °	'nC

NOTE 1: Voltage values are with respect to the network ground terminal.

### recommended operating conditions

	MIN NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 2)	4	14	V
Timing resistor	0.001	10	
Timing capacitor	0.01	1000	μι
Counter input frequency (Pin 14)	1.5		MHz
Pull-up resistor, time-base output	20		kΩ
Trigger and reset input pulse voltage	2 3		V
Trigger and reset input pulse duration	2		μs
External clock input pulse voltage	3		V
External clock input pulse duration	1		μs

NOTE 2: For operation with V_{CC}  $\leq$  4.5 V, short regulator output to V_{CC}.



4

PARAMETER	TEST CIRCUIT	TEST CONDITIONS		ТҮР	MAX	UNIT
Regulator output voltage	1	V _{CC} = 5 V, Trigger and reset open or grounded	3.9	4.4		
	2	$V_{CC} = 15 V$ , Trigger and reset open or grounded	5.8	6.3	6.8	l v
Modulation input open	1	V _{CC} = 5 V, Trigger and reset open or grounded	2.8	3.5	4.2	1 V
circuit voltage		V _{CC} = 15 V, Trigger and reset open or grounded	10.		;	1 *
Trigger threshold voltage	1	V _{CC} = 5 V, ·Reset at 0 V		1.4	2	V
High-level trigger current	1	V _{CC} = 5 V, Trigger at 2 V, Reset at 0 V		10		μA
Reset threshold voltage	1	V _{CC} = 5 V, Trigger at 0 V		1.4	2	V
High-level reset current	1	V _{CC} = 5 V, Trigger at 0 V		10		μΑ
Counter input (time base) threshold voltage	2	V _{CC} = 5 V, Trigger and reset open or grounded	1	1.4	ia.	v
Low-level output current, Q0 thru Q7	2	V _{CC} = 5 V, Trigger at 2 V, Reset at 0 V, V _{OL} < 0.4 V	2	4		mA
High-level output current, QO thru Q7	2	V _{OH} = 15 V, Reset at 2 V, Trigger at 0 V		0.01	15	μΑ
	1	V _{CC} = 5 V, Trigger at 0 V, Reset at 5 V		4	7	
Supply current	1	V _{CC} = 15 V, Trigger at 0 V, Reset at 5 V		13	18	mA
	3	V + = 4 V		1.5		

#### electrical characteristics at 25 °C free-air temperature

#### operating characteristics at 25 °C free-air temperature (unless otherwise noted)

PARAMETER	TEST CIRCUIT	TEST CONDITIONS [†]		MIN TYP	мах	UNIT	
Initial error of time base [‡]	1	V _{CC} = 5 V, Trigger at 5 V,	Reset at 0 V	±0.5	±5	%	
Temperature coefficient		T 0%C to 70%C	$V_{CC} = 5 V$	-200		ppm/°C	
of time-base period		1A = 0 °C to 70 °C	Vcc = 15 V	- 80			
Supply voltage sensitivity of time-base period	1	V _{CC} ≥ 8 V	0.08	0.7	0, V		
Time-base output frequency	1	$V_{CC} = 5 V$ , $R = MIN$ , $C = MIN$		130		kHz	
Propagation delay time	see Note 3	N 2	From trigger input	1		μs	
		see Note 3	From reset input	0.8	0.00		
Output rise time		$2 \qquad R_L = 3 k\Omega, \qquad C_L = 10 \text{ pF}$	Q0 thru Q7			1 37	
Output fall time	2					ns	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]This is the time-base period error due only to the uA2240C and expressed as a percentage of nominal (1.00 RC).

NOTE 3: Propagation delay time is measured from the 50% point on the leading edge of an input pulse to the 50% point on the leading edge of the resulting change of state at Q0.



# uA2240C Programmable Timer/Counter



PARAMETER MEASUREMENT INFORMATION

These connections may be open or grounded for this test.

Special Functions



# TYPICAL APPLICATION INFORMATION

Figure 5 shows voltage waveforms for typical operation of the uA2240C. If both reset and trigger inputs are low during power-up, the timer/counter will be in a reset state with all binary (Q) outputs high and the oscillator stopped. In this state, a high level on the trigger input starts the time-base oscillator. The initial negative-going pulse from the oscillator sets the Q outputs to low logic levels at the beginning of the first time-base period. The uA2240C will ignore any further signals at the trigger input until after a reset signal is applied to the reset input. With the trigger input low, a high level at the reset input will set Q outputs high and stop the time-base oscillator. If the reset signal occurs while the trigger input is high, the reset is ignored. If the reset input remains high when the trigger input goes low, the uA2240C will reset.





#### TYPICAL APPLICATION INFORMATION

In monostable applications of the uA2240C, one or more of the binary outputs will be connected to the reset terminal as shown in Figure 6. The binary outputs are open-collector stages that can be connected together to a common pull-up resistor to provide a "wired-OR" function. The combined output will be low as long as any one of the outputs is low. This type of arrangement can be used for time delays that are integer multiples of the time-base period. For example, if  $\Omega 5$  ( $2^5 = 32$ ) only is connected to the reset input, every trigger pulse will generate a 32-period active-low output. Similarly, if  $\Omega 0$ ,  $\Omega 4$ , and  $\Omega 5$  are connected to reset, each trigger pulse creates a 49-period delay.

In astable operation, the uA2240C will free-run from the time it is triggered until it receives an external reset signal.

The period of the time-base oscillator is equal to the RC time constant of an external resistor and capacitor connected as shown in Figure 6 when the modulation input is open (approximately 3.5 V internal, see Figure 4). Under conditions of high supply voltage ( $V_{CC} > 7$  V) and low value of timing capacitor ( $C < 0.1 \ \mu$ F), the pulse duration of the time-base oscillator may be too short to properly trigger the counters. This situation can be corrected by adding a 300-pF capacitor between the time-base output and ground. The time-base output (TBO) is an open-collector output that requires a 20-k\Omega pull-up resistor to Pin 15 for proper operation. The time-base pin may also be used as an input to the counters for an external time-base or as an active-low inhibit input to interrupt counting without resetting.

The modulation input varies the ratio of the time-base period to the RC time constant as a function of the dc bias voltage (see Figure 4). It can also be used to synchronize the timer/counter to an external clock or sync signal.

The regulator output is used internally to drive the binary counters and the control logic. This terminal can also be used to supply voltage to additional uA2240C devices to minimize power dissipation when several timer circuits are cascaded. For circuit operation with an external clock, the regulator output can be used as the V_{CC} input terminal to power down the internal time base and reduce power dissipation. When supply voltages less than 4.5 V are used with the internal time base, Pin 15 should be shorted to Pin 16.



FIGURE 6. BASIC CONNECTIONS FOR TIMING APPLICATIONS

